비선형 포물형 안정성 방정식(Nonlinear Parabolized Stability Equations, NPSE)은 보다 전체적인 천이 과정 연구에 효과적으로 사용될 수 있다. NPSE는 천이 과정에서 비선형 구간의 안정성을 직접 수치 ...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A82679143
2011
Korean
558
KCI등재,SCOPUS,ESCI
학술저널
805-815(11쪽)
1
0
상세조회0
다운로드국문 초록 (Abstract)
비선형 포물형 안정성 방정식(Nonlinear Parabolized Stability Equations, NPSE)은 보다 전체적인 천이 과정 연구에 효과적으로 사용될 수 있다. NPSE는 천이 과정에서 비선형 구간의 안정성을 직접 수치 ...
비선형 포물형 안정성 방정식(Nonlinear Parabolized Stability Equations, NPSE)은 보다 전체적인 천이 과정 연구에 효과적으로 사용될 수 있다. NPSE는 천이 과정에서 비선형 구간의 안정성을 직접 수치 모사(Direct Numerical Simulation, DNS)에 비해 적은 계산 비용을 사용하여 효율적으로 해석 할 수 있다. 본 연구에서는 일반 좌표계에서의 NPSE를 구성하고, 수치 계산을 위한 코드를 개발하였다. 코드의 검증을 위해 비압축성 및 압축성 평판 경계층에서의 벤치마크 문제들을 해석하였다. 본 연구의 NSPE 해석 기법이 비선형 안정성 연구에 효율적이고 효과적인 방법임을 확인하였다.
다국어 초록 (Multilingual Abstract)
Nonlinear Parabolized Stability Equations(NSPE) can be effectively used to study more throughly the transition process. NPSE can efficiently analyze the stability of a nonlinear region in transition process with low computational cost compared to Dire...
Nonlinear Parabolized Stability Equations(NSPE) can be effectively used to study more throughly the transition process. NPSE can efficiently analyze the stability of a nonlinear region in transition process with low computational cost compared to Direct Numerical Simulation(DNS). In this study, NPSE in general coordinate system is formulated and a computer code to solve numerically the equations is developed. Benchmark problems for incompressible and compressible boundary layers over a flat plate are analyzed to validate the present code. It is confirmed that the NPSE methodology constructed in this study is an efficient and effective tool for nonlinear stability analysis.
목차 (Table of Contents)
참고문헌 (Reference)
1 "www.netlib.org/lapack"
2 R. D. Joslin, "Validation of Three-Dimensional Incompressible Spatial Direct Numerical Simulation Code" 1992
3 A. M. O. Smith, "Transition, Pressure Gradient, and Stability Theory" Douglas Aircr. Co., Inc 1956
4 A. Fedorov, "Transition and Stability of High-Speed Boundary Layers" 43 : 79-95, 2011
5 Y. S. Kachanov, "The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer" 138 : 209-247, 1984
6 T. Herbert, "Studies of Boundary-Layer Receptivity with Parabolzied Stability Equations" 1993
7 C. D. Pruett, "Spatial Direct Numerical Simulation of High-Speed Boundary Layer Flows Part I: Algorithmic Considerations and Validation" 7 : 49-76, 1995
8 M. R. Malik, "Secondary instability of crossflow vortices and swept-wing boundary-layer transition" 399 : 85-115, 1999
9 N. M. El-Hady, "Secondary Subharmonic Instability of Boundary Layers With Pressure Gradient and Suction" 1988
10 T. Colonius, "Parabolized stability equation models of large-scale jet mixing noise" 6 : 64-73, 2010
1 "www.netlib.org/lapack"
2 R. D. Joslin, "Validation of Three-Dimensional Incompressible Spatial Direct Numerical Simulation Code" 1992
3 A. M. O. Smith, "Transition, Pressure Gradient, and Stability Theory" Douglas Aircr. Co., Inc 1956
4 A. Fedorov, "Transition and Stability of High-Speed Boundary Layers" 43 : 79-95, 2011
5 Y. S. Kachanov, "The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer" 138 : 209-247, 1984
6 T. Herbert, "Studies of Boundary-Layer Receptivity with Parabolzied Stability Equations" 1993
7 C. D. Pruett, "Spatial Direct Numerical Simulation of High-Speed Boundary Layer Flows Part I: Algorithmic Considerations and Validation" 7 : 49-76, 1995
8 M. R. Malik, "Secondary instability of crossflow vortices and swept-wing boundary-layer transition" 399 : 85-115, 1999
9 N. M. El-Hady, "Secondary Subharmonic Instability of Boundary Layers With Pressure Gradient and Suction" 1988
10 T. Colonius, "Parabolized stability equation models of large-scale jet mixing noise" 6 : 64-73, 2010
11 T. Hebert, "Parabolized Stability Equations" 1993
12 T. Hebert, "Parabolized Stability Equations" 29 : 245-283, 1997
13 F.Li, "On the Nature of PSE Approximation" 8 : 253-273, 1996
14 P. Andersson, "On a stabilization procedure for the parabolic stability equations" 33 : 311-322, 1998
15 C-L. Chang, "Oblique-mode breakdown and secondary instability in supersonic boundary layers" 273 : 323-360, 1994
16 M. R. Malik, "Numerical Methods for Hypersonic Boundary Layer Stability" 86 : 376-413, 1990
17 N. M. El-Hady, "Nonparallel instability of supersonic and hypersonic boundary layers" 3 (3): 2164-2178, 1991
18 M. R. Malik, "Nonparallel and nonlinear stability of supersonic jet flow" 29 : 327-365, 2000
19 W. S. Saric, "Nonlinear Stability and Transition in 3-D Boundary Layers" 33 : 469-487, 1998
20 J. T. Stuart, "Nonlinear Stability Theory" 3 : 347-370, 1971
21 C.-L. Chang, "Non-Parallel Stability of Compressible Boundary Layers" 1993
22 F. P. Bertolotti, "Linear and nonlinear stability of the Blasius boundary layer" 242 : 441-474, 1992
23 Bertolotti, F.P, "Linear and Nonlinear Stability of Boundary Layers with Streamwise Varying Properties" The Ohio State University 1990
24 C. L. Chang, "Linear and Nonlinear PSE for Compressible Boundary Layers" 93-70, 1993
25 H. L. Reed, "Linear Stability Theory Applied to Boundary Layers" 389-428, 1996
26 C.-L. Chang, "Langley Stability and Transition Analysis Code(LASTRAC) Version 1.2 User Manual" 2004
27 L. Jiang, "Instability-wave propagation in boundary-layer flows at subsonic through hypersonic Mach numbers" 65 : 469-487, 2004
28 T. Herbert, "Instability of Boundary Layers" 20 : 487-526, 1988
29 M. R. Malik, "Finite-Difference Solution of the Compressible Stability Eigenvalue Problem" 1982
30 G. Schrauf, "Evaluation of Transition in Flight Tests Using Nonlinear PSE Analysis" 1995
31 H. Fasel, "Direct numerical simulation of transition in supersonic boundary layer: oblique breakdown" (FED 151) : 77-92, 1993
32 C. S. J. Mayer, "Direct numerical simulation of complete transition to turbulence via obliqe breakdown at Mach 3" 2011
33 C. S. J. Mayer, "Detailed Comparison of DNS with PSE for Oblique Breakdown at Mach 3" 2010
34 C.-L. Chang, "Compressible Stability of Growing Boundary Layers Using Parabolized Stability Equation" 1991
35 E. Reshotko, "Boundary-Layer Stability and Transition" 9 : 311-349, 1976
36 W. S. Saric, "Boundary-Layer Receptivity to Freestream Disturbances" 34 : 291-319, 2002
37 C. L. Chang, "Boundary-Layer Receptivity and Integrated Transition Prediction" 2005
38 L. M. Mack, "Boundary-Layer Linear Stability Theory" 1984
외부 장착물 형상에 따른 F-5 항공기 수평미익의 공탄성 특성 예측
연료전지 항공기를 위한 고체상태 NaBH4의 수소발생 및 연료전지 구동 특성
스팬 방향 곡선 상반각과 방구멍을 갖는 전통 방패연의 풍동 실험 연구
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2023 | 평가예정 | 계속평가 신청대상 (등재유지) | |
2018-01-01 | 평가 | 우수등재학술지 선정 (계속평가) | |
2015-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2005-01-01 | 평가 | 등재학술지 유지 (등재유지) | |
2002-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | |
1999-07-01 | 평가 | 등재후보학술지 선정 (신규평가) |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.28 | 0.28 | 0.27 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.25 | 0.22 | 0.421 | 0.09 |