RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Fog computing, deep learning and big data analytics-research directions

      한글로보기

      https://www.riss.kr/link?id=M15748871

      • 저자
      • 발행사항

        Singapore : Springer, [2019]

      • 발행연도

        2019

      • 작성언어

        영어

      • 주제어
      • DDC

        004.67/82 판사항(23)

      • ISBN

        9789811332081 (hbk.)
        9811332088 (hbk.)

      • 자료형태

        일반단행본

      • 발행국(도시)

        싱가포르

      • 서명/저자사항

        Fog computing, deep learning and big data analytics-research directions / C.S.R. Prabhu.

      • 형태사항

        xiii, 71 p. ; 25 cm.

      • 일반주기명

        Includes bibliographical references (p. 59-71).
        Introduction -- Fog application management -- Fog analytics -- Fog security and privacy -- Research directions -- Conclusion.

      • 소장기관
        • 부산대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • 자료제공 : aladin
      • 1 Introduction
      • 1.1. A new economy based on IOT emerging by 2015
      • 1.1.1 Emergence of IOT
      • 1.1.2 Smart Cities and IOT
      • 1.1.3 Stages of IOT and Stakeholders
      • 자료제공 : aladin
      • 1 Introduction
      • 1.1. A new economy based on IOT emerging by 2015
      • 1.1.1 Emergence of IOT
      • 1.1.2 Smart Cities and IOT
      • 1.1.3 Stages of IOT and Stakeholders
      • 1.1.3.1 Stages of IOT
      • 1.1.3.2 Stakeholders
      • 1.1.3.3 Practical Down Scaling
      • 1.1.4 Analytics
      • 1.1.5 Analytics from the Edge to Cloud [179]
      • 1.1.6 Security and Privacy Issues and Challenges in Internet of Things (IOT)
      • 1.1.7 Access
      • 1.1.8 Cost Reduction
      • 1.1.9 Opportunities and Business Model
      • 1.1.10 Content and Semantics
      • 1.1.11 Data based Business models coming out of IOT
      • 1.1.12 Future of IOT
      • 1.1.12.1 Technology Drivers
      • 1.1.12.2 Future possibilities
      • 1.1.12.3 Challenges and Concerns
      • 1.1.13 Big Data Analytics and IOT
      • 1.1.13.1 Infrastructure for integration of Big Date with IOT
      • 1.2 The Technological challenges of an IOT driven Economy
      • 1.3 Fog Computing Paradigm as a solution
      • 1.4 Definitions of Fog Computing
      • 1.5 Characteristics of Fog computing
      • 1.6 Architectures of Fog computing
      • 1.6.1 Cloudlet Architecture
      • 1.6.2 IoX Architecture
      • 1.6.3 Local Grid's Fog Computing platform
      • 1.6.4 Parstream
      • 1.6.5 Para Drop
      • 1.6.6 Prismatic Vortex
      • 1.7 Designing a robust Fog computing platform
      • 1.8 Present challenges in designing Fog Computing Platform
      • 1.9 Platform and Applications
      • 1.9.1 Components of Fog Computing Platform
      • 1.9.2 Applications and case studies
      • 1.9.2.1 Health data management and Health care
      • 1.9.2.2 Smart village health care
      • 1.9.2.3 Smart home
      • 1.9.2.4 Smart vehicle and vehicular fog computing
      • 1.9.2.5 Augmented Reality applications
      • 2. Fog Application management
      • 2.1 Introduction
      • 2.2 Application Management Approaches
      • 2.3 Performance
      • 2.4 Latency Aware Application Management
      • 2.5 Distributed Application Development in Fog
      • 2.6 Distributed Data flow approach
      • 2.7 Resource Coordination Approaches
      • 3 Fog Analytics
      • 3.1 Introduction
      • 3.2 Fog Computing
      • 3.3 Stream data processing
      • 3.4 Stream Data Analytics and Fog computing
      • 3.4.1 Machine Learning for Big Data Stream data and Fog Analytics
      • 3.4.1.1 Supervised Learning
      • 3.4.1.2 Distributed Decision Trees
      • 3.5.1.3 Clustering Methods for Big Data
      • 3.4.1.4 Distributed Parallel Association Rule Mining Techniques for Big Data Scenario
      • 3.4.1.5 Dynamic Association Mining
      • 3.4.2 Deep Learning Techniques
      • 3.4.3 Applications of Deep Learning in Big Data Analytics
      • 3.4.3.1 Semantic Indexing
      • 3.4.3.2 Discriminative Tasks and Semantic Tagging
      • 3.4.4. Deep Learning Challenges in Big Data Analytics
      • 3.4.4.1 Incremental Learning for Non-Stationary Data
      • 3.4.4.2 High-Dimensional Data
      • 3.4.4.3 Large-Scale Models
      • 3.5 Different Approaches of Fog Analytics
      • 3.6 Comparision
      • 3.7 Cloud Solutions for the Edge Analytics
      • 4 Fog Security and Privary
      • 4.1 Introduction
      • 4.2 Secure Communications in Fog Computing
      • 4.3 Authentication
      • 4.4 Privacy Issues
      • 4.5 User Behaviour Profiling
      • 4.6 Dynamic Fog Nodes and EUs
      • 4.7 Malicious Attacks
      • 4.8 Malicious Insider in the Cloud
      • 4.9 Man in the Middle Attack
      • 4.10 Secured Multi-Tenancy
      • 4.11 Backup and Recovery
      • 5 Research Directions
      • 6 CONCLUSION
      • References
      더보기

      온라인 도서 정보

      온라인 서점 구매

      온라인 서점 구매 정보
      서점명 서명 판매현황 종이책 전자책 구매링크
      정가 판매가(할인율) 포인트(포인트몰)
      알라딘

      Fog Computing, Deep Learning and Big Data Analytics-research Directions (Hardcover)

      판매중 278,980원 228,760원 (18%)

      종이책 구매

      11,440포인트
      예스24.com

      Fog Computing, Deep Learning and Big Data Analytics-Research Directions

      판매중 299,600원 284,620원 (5%)

      종이책 구매

      8,540포인트 (3%)
      • 포인트 적립은 해당 온라인 서점 회원인 경우만 해당됩니다.
      • 상기 할인율 및 적립포인트는 온라인 서점에서 제공하는 정보와 일치하지 않을 수 있습니다.
      • RISS 서비스에서는 해당 온라인 서점에서 구매한 상품에 대하여 보증하거나 별도의 책임을 지지 않습니다.

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼