RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Bearing capacity analysis of open-ended piles considering the degree of soil plugging

      한글로보기

      https://www.riss.kr/link?id=A107736526

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents a new design approach for predicting the degree of soil plugging and the inner skin friction of axial-loaded open-ended piles. The main objective of this study was to propose the SPT-based design method considering the plugging effect, since the SPT test is commonly used to identify the subsoil condition in sandy soils. The plugging effect for open-ended piles was quantified using field plugging measurements and the results of three full-scale field pile load tests. Based on the plugging measurements, the relationship of the plug length ratio (PLR) with the soil properties, pile geometry and pile driving condition was established. Additionally, a linear relationship between the PLR and incremental filling ratio (IFR) was proposed. Full-scale tests were performed on three instrumented piles with different diameters (508.0, 711.2 and 914.4mm). An instrumented double-walled pile system was used to measure the outer and inner skin friction along the pile shaft. Based on the results of the full-scale field pile load tests, the inner skin friction of the open-ended piles was proposed as a function of the IFR and pile diameter. The predicted values were consistent with the measured values, such as the IFR and inner skin friction. The proposed method can predict the degree of soil plugging and the inner skin friction of open-ended piles and be selected as convenient option in engineering field.
      번역하기

      This paper presents a new design approach for predicting the degree of soil plugging and the inner skin friction of axial-loaded open-ended piles. The main objective of this study was to propose the SPT-based design method considering the plugging eff...

      This paper presents a new design approach for predicting the degree of soil plugging and the inner skin friction of axial-loaded open-ended piles. The main objective of this study was to propose the SPT-based design method considering the plugging effect, since the SPT test is commonly used to identify the subsoil condition in sandy soils. The plugging effect for open-ended piles was quantified using field plugging measurements and the results of three full-scale field pile load tests. Based on the plugging measurements, the relationship of the plug length ratio (PLR) with the soil properties, pile geometry and pile driving condition was established. Additionally, a linear relationship between the PLR and incremental filling ratio (IFR) was proposed. Full-scale tests were performed on three instrumented piles with different diameters (508.0, 711.2 and 914.4mm). An instrumented double-walled pile system was used to measure the outer and inner skin friction along the pile shaft. Based on the results of the full-scale field pile load tests, the inner skin friction of the open-ended piles was proposed as a function of the IFR and pile diameter. The predicted values were consistent with the measured values, such as the IFR and inner skin friction. The proposed method can predict the degree of soil plugging and the inner skin friction of open-ended piles and be selected as convenient option in engineering field.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼