RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      미분 오차 척도를 이용한 메쉬 간략화 알고리즘 = Mesh Simplification Algorithm Using Differential Error Metric

      한글로보기

      https://www.riss.kr/link?id=A82293608

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문은 미분오차 척도를 이용하여 메쉬를 간략화하는 새로운 알고리즘을 제안한다. 많은 간략화 알고리즘은 거리 오차 척도를 이용하였으나, 거리 오차 척도는 높은 곡률을 갖는 동시에 ...

      본 논문은 미분오차 척도를 이용하여 메쉬를 간략화하는 새로운 알고리즘을 제안한다. 많은 간략화 알고리즘은 거리 오차 척도를 이용하였으나, 거리 오차 척도는 높은 곡률을 갖는 동시에 작은 거리 오차를 갖는 지역에 대해서는 메쉬 간략화를 위한정확한 기하학적 오차 측정이 어렵다. 본 논문은 간략화를 위해 새로운 오차 척도인 미분 오차 척도를 제안한다. 미분 오차 척도란 거리 오차 척도와 거리 오차의 1차 미분인 탄젠트 오차 척도, 그리고 거리 오차의 2차 미분인 곡률 오차 척도를 합하여 정의된 오차척도로서, 모델의 특징 부분의 형상을 최대한으로 보존 가능하다. 메쉬는 이산 표면이지만 알지 못하는 부드러운 표면의 불연속 선형 근사로 표현될 수 있고, 이산 표면은 미분이 추정 가능하므로 미분 오차 척도라는 새로운 개념을 도입할수 있다. 본 간략화 알고리즘은 반복적인 모서리 축약(Edge Collapse)에 바탕을 두고 있고, 미분 오차 척도를 이용하여 기하학적으로 원래의 형상이 잘 유지되는 새로운 점의 위치를 찾을 수 있다.
      본 논문에서는 기존 방법보다 더 작은 기하학적인 오차와 높은 품질의 간략화 된 모델의 예를 보여준다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This paper proposes a new mesh simplification algorithm using differential error metric. Many simplification algorithms make use of a distance error metric, but it is hard to measure an accurate geometric error for the high-curvature region even thoug...

      This paper proposes a new mesh simplification algorithm using differential error metric. Many simplification algorithms make use of a distance error metric, but it is hard to measure an accurate geometric error for the high-curvature region even though it has a small distance error measured in distance error metric. This paper proposes a new differential error metric that results in unifying a distance metric and its first and second order differentials, which become tangent vector and curvature metric. Since discrete surfaces may be considered as piecewise linear approximation of unknown smooth surfaces, theses differentials can be estimated and we can construct new concept of differential error metric for discrete surfaces with them. For our simplification algorithm based on iterative edge collapses, this differential error metric can assign the new vertex position maintaining the geometry of an original appearance. In this paper, we clearly show that our simplified results have better quality and smaller geometry error than others.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 문제 정의
      • 3. 미분 오차 척도
      • 요약
      • Abstract
      • 1. 서론
      • 2. 문제 정의
      • 3. 미분 오차 척도
      • 4. 간략화 알고리즘
      • 5. 실험 결과
      • 6. 결론 및 향후 연구
      • 참고문헌
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼