RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient

      한글로보기

      https://www.riss.kr/link?id=A105396881

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation,...

      Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro, we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

      더보기

      참고문헌 (Reference)

      1 Lee, S. K., "Transcriptional networks regulating neuronal identity in the developing spinal cord" 4 : 1183-1191, 2001

      2 Kong, S. Y., "The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells" 32 : 1108-1119, 2017

      3 Hebert, J. M., "The genetics of early telencephalon patterning: some assembly required" 9 : 678-685, 2008

      4 Panchision, D. M., "The control of neural stem cells by morphogenic signals" 12 : 478-487, 2002

      5 Xu, J., "Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures" 127 : 1833-1843, 2000

      6 Alenzi, F. Q. B., "Stem cells: biology and clinical potential" 10 : 19929-19940, 2011

      7 Kim, H. J., "Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons" 1812 : 1-11, 2011

      8 김현정, "Stem Cells in Drug Screening for Neurodegenerative Disease" 대한약리학회 16 (16): 1-9, 2012

      9 Abhyankar, V. V., "Spatiotemporal micropatterning of cells on arbitrary substrates" 79 : 4066-4073, 2007

      10 Nishii, K., "Shear stress upregulates regeneration-related immediate early genes in liver progenitors in 3D ECM-like microenvironments" 233 : 4272-4281, 2018

      1 Lee, S. K., "Transcriptional networks regulating neuronal identity in the developing spinal cord" 4 : 1183-1191, 2001

      2 Kong, S. Y., "The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells" 32 : 1108-1119, 2017

      3 Hebert, J. M., "The genetics of early telencephalon patterning: some assembly required" 9 : 678-685, 2008

      4 Panchision, D. M., "The control of neural stem cells by morphogenic signals" 12 : 478-487, 2002

      5 Xu, J., "Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures" 127 : 1833-1843, 2000

      6 Alenzi, F. Q. B., "Stem cells: biology and clinical potential" 10 : 19929-19940, 2011

      7 Kim, H. J., "Stem cell potential in Parkinson's disease and molecular factors for the generation of dopamine neurons" 1812 : 1-11, 2011

      8 김현정, "Stem Cells in Drug Screening for Neurodegenerative Disease" 대한약리학회 16 (16): 1-9, 2012

      9 Abhyankar, V. V., "Spatiotemporal micropatterning of cells on arbitrary substrates" 79 : 4066-4073, 2007

      10 Nishii, K., "Shear stress upregulates regeneration-related immediate early genes in liver progenitors in 3D ECM-like microenvironments" 233 : 4272-4281, 2018

      11 Rogulja, D., "Regulation of cell proliferation by a morphogen gradient" 123 : 449-461, 2005

      12 Kim, H. J., "Regionally specified human neural progenitor cells derived from the mesencephalon and forebrain undergo increased neurogenesis following overexpression of ASCL1" 27 : 390-398, 2009

      13 Nakata, N., "Protective effects of basic fibroblast growth factor against hippocampal neuronal damage following cerebral ischemia in the gerbil" 605 : 354-356, 1993

      14 Chadi, G., "Protective actions of human recombinant basic fibroblast growth factor on MPTP-lesioned nigrostriatal dopamine neurons after intraventricular infusion" 97 : 145-158, 1993

      15 Beebe, D. J., "Physics and applications of microfluidics in biology" 4 : 261-286, 2002

      16 Rallu, M., "Parsing the prosencephalon" 3 : 943-951, 2002

      17 Li Jeon, N., "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device" 20 : 826-830, 2002

      18 Jessell, T. M., "Neuronal specification in the spinal cord: inductive signals and transcriptional codes" 1 : 20-29, 2000

      19 Altmann, C. R., "Neural patterning in the vertebrate embryo" 203 : 447-482, 2001

      20 Gurdon, J. B., "Morphogen gradient interpretation" 413 : 797-803, 2001

      21 Sia, S. K., "Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies" 24 : 3563-3576, 2003

      22 Walker, G. M., "Microenvironment design considerations for cellular scale studies" 4 : 91-97, 2004

      23 Abematsu, M., "Mechanisms of neural stem cell fate determination: extracellular cues and intracellular programs" 1 : 267-277, 2006

      24 Parras, C. M., "Mash1 specifies neurons and oligodendrocytes in the postnatal brain" 23 : 4495-4505, 2004

      25 Gage, F. H., "Mammalian neural stem cells" 287 : 1433-1438, 2000

      26 Nelson, A. D., "Low concentrations of extracellular FGF-2 are sufficient but not essential for neurogenesis from human neural progenitor cells" 33 : 29-35, 2006

      27 Capowski, E. E., "Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy" 163 : 338-349, 2007

      28 Kong, S. Y., "Kuwanon V inhibits proliferation, promotes cell survival and increases neurogenesis of neural stem cells" 10 : e0118188-, 2015

      29 Park, T. H., "Integration of cell culture and microfabrication technology" 19 : 243-253, 2003

      30 Chung, B. G., "Human neural stem cell growth and differentiation in a gradient-generating microfluidic device" 5 : 401-406, 2005

      31 Farah, M. H., "Generation of neurons by transient expression of neural bHLH proteins in mammalian cells" 127 : 693-702, 2000

      32 Clarke, D. L., "Generalized potential of adult neural stem cells" 288 : 1660-1663, 2000

      33 Muller, F. J., "Gene therapy: can neural stem cells deliver?" 7 : 75-84, 2006

      34 Palmer, T. D., "Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS" 19 : 8487-8497, 1999

      35 Qian, X., "FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells" 18 : 81-93, 1997

      36 Lee, S. M., "Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain" 124 : 959-969, 1997

      37 Dorsky, R. I., "Environmental signals and cell fate specification in premigratory neural crest" 22 : 708-716, 2000

      38 Germain, N., "Embryonic stem cell neurogenesis and neural specification" 111 : 535-542, 2010

      39 Thoma, E. C., "Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons" 7 : e38651-, 2012

      40 Tropepe, V., "Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon" 208 : 166-188, 1999

      41 Lee, H. R., "Discovery of a small molecule that enhances astrocytogenesis by activation of stat3, smad1/5/8, and erk1/2 via induction of cytokines in neural stem cells" 7 : 90-99, 2016

      42 Park, J. Y., "Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient" 27 : 2646-2654, 2009

      43 Wang, S. J., "Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis" 300 : 180-189, 2004

      44 Bavister, B. D., "Culture of preimplantation embryos: facts and artifacts" 1 : 91-148, 1995

      45 Kim, H. J., "Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1" 203 : 394-405, 2007

      46 Ng, J. M., "Components for integrated poly(dimethylsiloxane) microfluidic systems" 23 : 3461-3473, 2002

      47 Ribes, V., "Combinatorial signalling controls Neurogenin2 expression at the onset of spinal neurogenesis" 321 : 470-481, 2008

      48 Cha, K. J., "Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface" 7 : 13077-, 2017

      49 Megason, S. G., "A mitogen gradient of dorsal midline Wnts organizes growth in the CNS" 129 : 2087-2098, 2002

      50 Chung, B. G., "A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods" 7 : 60-, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2015-07-07 학술지명변경 한글명 : 응용약물학회지 -> Biomolecules & Therapeutics KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-09-30 학술지명변경 외국어명 : The Journal of Applied Pharmacology -> Biomolecules & Therapeutics KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 2.57 0.4 1.87
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      1.43 1.17 0.636 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼