In this paper, we introduce the architecture of Genetic Algorithm (GA) based Feed-forward Polynomial Neural Networks (PNNs) and discuss a comprehensive design methodology. A conventional PNN consists of Polynomial Neurons, or nodes, located in several...
In this paper, we introduce the architecture of Genetic Algorithm (GA) based Feed-forward Polynomial Neural Networks (PNNs) and discuss a comprehensive design methodology. A conventional PNN consists of Polynomial Neurons, or nodes, located in several layers through a network growth process. In order to generate structurally optimized PNNs, a GA-based design procedure for each layer of the PNN leads to the selection of preferred nodes (PNs) with optimal parameters available within the PNN. To evaluate the performance of the GA-based PNN, experiments are done on a model by applying Medical Imaging System (MIS) data to a multi-variable software process. A comparative analysis shows that the proposed GA-based PNN is modeled with higher accuracy and more superb predictive capability than previously presented intelligent models.