RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Development and Characterization of Horse Bone-derived Natural Calcium Phosphate Powders

      한글로보기

      https://www.riss.kr/link?id=A104681497

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Purpose: This study was to develop an effective process for fabricating biocompatible calcium phosphate powders (CPPs)using horse bones, and to investigate the characteristics of them. Methods: The characteristics of horse bone powders(HBPs) were inve...

      Purpose: This study was to develop an effective process for fabricating biocompatible calcium phosphate powders (CPPs)using horse bones, and to investigate the characteristics of them. Methods: The characteristics of horse bone powders(HBPs) were investigated according to the different osseous tissue types (compact bone and cancellous bone), bone types(spine and tibia), pretreatment methods (cold water, H2O2, and hot water), sintering time (4, 8 and 12h), and sinteringtemperature (600, 900, 1100 and1300°C). In addition, the grinding methods were compared based on the wet grinding (ballmill) and dry grinding (blade grinder) method to make it as powders. Finally, their cytotoxicity and cell viability werechecked. Results: Regardless of the types of osseous tissues and bones, HBPs were well fabricated as biocompatible CPPs. Itwas also found that the pretreatment methods did not influence on the resultants, showing well-fabricated HBPs.
      Considering the processing time, the hot water method was the most suitable compared to other pretreatment methods.
      Further, 12h-sintering time was sufficient to remove residual organic compounds. The sintering temperatures greatlyaffected the properties of bone powders fabricated. The x-ray diffraction (XRD) peak of horse bone sintered at 600°C wasmost closed to that of hydroxyapatite (HA). Our bioactivity study demonstrated that the HBPs fabricated by sintering horsebones at 1300°C showed the best performance in terms of cell viability whereas the HBPs 1100°C showed the cytotoxicity.
      Conclusions: Using various types of horse bone tissues, biocompatible CPPs were successfully developed. We conclude thatthe HBPs may have a great potential as biomaterials for various biological applications including bone tissue engineering.

      더보기

      참고문헌 (Reference)

      1 Kim, H., "X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage" 59 (59): 58-63, 1996

      2 Langer, R, "Tissue engineering" 260 (260): 920-926, 1993

      3 Skalak, R, "Tissue Engineering" Alan R. Liss. Inc. 1988

      4 Danilchenko, S., "Thermal behavior of biogenic apatite crystals in bone: An X‐ray diffraction study" 41 (41): 268-275, 2006

      5 Lafon, J. P., "Termal decomposition of carbonated calcium phosphate apatites" 72 (72): 1127-1134, 2003

      6 Moore, W. R., "Synthetic bone graft substitutes" 71 (71): 354-361, 2001

      7 Mondal, S., "Studies on Processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes" 55-67, 2012

      8 Ueno, Y., "Studies of sintered bone as a bone substitute" 3 : 11-16, 1983

      9 Shi, Z., "Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells" 5 (5): 338-345, 2009

      10 Taniguchi, Y., "Sintered bone implantation for the treatment of benign bone tumours in the hand" 24 (24): 109-112, 1999

      1 Kim, H., "X-ray diffraction, electron microscopy, and Fourier transform infrared spectroscopy of apatite crystals isolated from chicken and bovine calcified cartilage" 59 (59): 58-63, 1996

      2 Langer, R, "Tissue engineering" 260 (260): 920-926, 1993

      3 Skalak, R, "Tissue Engineering" Alan R. Liss. Inc. 1988

      4 Danilchenko, S., "Thermal behavior of biogenic apatite crystals in bone: An X‐ray diffraction study" 41 (41): 268-275, 2006

      5 Lafon, J. P., "Termal decomposition of carbonated calcium phosphate apatites" 72 (72): 1127-1134, 2003

      6 Moore, W. R., "Synthetic bone graft substitutes" 71 (71): 354-361, 2001

      7 Mondal, S., "Studies on Processing and Characterization of Hydroxyapatite Biomaterials from Different Bio Wastes" 55-67, 2012

      8 Ueno, Y., "Studies of sintered bone as a bone substitute" 3 : 11-16, 1983

      9 Shi, Z., "Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells" 5 (5): 338-345, 2009

      10 Taniguchi, Y., "Sintered bone implantation for the treatment of benign bone tumours in the hand" 24 (24): 109-112, 1999

      11 Cai, Y. R., "Role of hydroxyapatite nanoparticle size in bone cell proliferation" 17 (17): 3780-3787, 2007

      12 Laird, D. F., "Reinforced Sintered Cancellous Bovine Bone as a Potential Bone Replacement Material" University of Waikato 2010

      13 Guizzardi, S., "Qualitative assessment of natural apatite in vitro and in vivo" 53 (53): 227-234, 2000

      14 Ooi, C. Y., "Properties of hydroxyapatite produced by annealing of bovine bone" 33 (33): 1171-1177, 2007

      15 Wang, J., "Proliferation and differentiation of MC3T3-E1 cells on calcium phosphate/chitosan coatings" 87 (87): 650-654, 2008

      16 Wang, C. Y., "Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature" 25 (25): 2949-2956, 2004

      17 Sobczak, A., "Preparation of hydroxyapatite from animal bones" 11 (11): 23-28, 2009

      18 Barakat, N. A. M., "Physiochemical characterizations of hydroxyapatite extracted from bovine bones by three different methods: Extraction of biologically desirable HAp" 28 (28): 1381-1387, 2008

      19 Haberko, K., "Natural hydroxyapatite-its behaviour during heat treatment" 26 (26): 537-542, 2006

      20 Ozawa, M, "Microstructural Development of Natural Hydroxyapatite Originated from Fish‐Bone Waste through Heat Treatment" 85 (85): 1315-1317, 2002

      21 Betz, R. R., "Limitations of autograft and allograft:new synthetic solutions" 25 (25): s561-s570, 2002

      22 Panda, N. N., "Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold" 1-8, 2013

      23 Fernandez-Moran, H, "Electron microscopy and x-ray diffraction of bone" 23 (23): 260-264, 1957

      24 Laquerriere, P., "Effect of hydroxyapatite sintering temperature on intracellular ionic concentrations of monocytes: A TEM‐cryo‐x‐ray microanalysis study" 58 (58): 238-246, 2001

      25 Quarles, L. D., "Distinct proliferative and differentiated stages of murine MC3T3‐E1 cells in culture: An in vitro model of osteoblast development" 7 (7): 683-692, 1992

      26 Mezahi, F. Z., "Dissolution kinetic and structural behaviour of natural hydroxyapatite vs. thermal treatment" 95 (95): 21-29, 2009

      27 Baik, S. J., "Development of Fast-Hardening Calcium Phosphate Cement Using Sintered Animal Bone Powders and Chitosan Solution for Bone Tissue Engineering" Seoul National University 2011

      28 Wang, X. Y., "Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone" 23 (23): 473-480, 2010

      29 Tsai, W. C., "Clinical result of sintered bovine hydroxyapatite bone substitute: analysis of the interface reaction between tissue and bone substitute" 15 (15): 223-232, 2010

      30 Rodrigues, C., "Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering" 24 (24): 4987-4997, 2003

      31 M. E. Bahrololoom, "Characterisation of natural hydroxyapatite extracted from bovine cortical bone ash" 세라믹공정연구센터 10 (10): 129-138, 2009

      32 Johnell, O, "An estimate of the worldwide prevalence and disability associated with osteoporotic fractures" 17 (17): 1726-1733, 1733

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2024 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2021-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-02-08 학술지명변경 한글명 : 바이오시스템공학 -> Journal of Biosystems Engineering KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-04-11 학술지명변경 한글명 : 한국농업기계학회지 -> 바이오시스템공학 KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.15 0.15 0.15
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.14 0.2 0.323 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼