RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS

      한글로보기

      https://www.riss.kr/link?id=A103366604

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Let Zn be the Cartesian product of the set of integers Z and let (Z, T) and (Zn, Tn) be the Khalimsky line topology on Z and the Khalimsky product topology on Zn, respectively. Then for a set X⊂ Zn,consider the subspace (X, TnX ) induced from (Zn, Tn). Considering a k-adjacency on (X, TnX ), we call it a (computer topological) space with k-adjacency and use the notation (X, k, TnX ) := Xn,k. In this paper we introduce the notions of KD-(k0, k1)-homotopy equivalence and KD-kdeformation retract and investigate a classification of (computer topological)spaces Xn,k in terms of a KD-(k0, k1)-homotopy equivalence.
      번역하기

      Let Zn be the Cartesian product of the set of integers Z and let (Z, T) and (Zn, Tn) be the Khalimsky line topology on Z and the Khalimsky product topology on Zn, respectively. Then for a set X⊂ Zn,consider the subspace (X, TnX ) induced from (Zn, T...

      Let Zn be the Cartesian product of the set of integers Z and let (Z, T) and (Zn, Tn) be the Khalimsky line topology on Z and the Khalimsky product topology on Zn, respectively. Then for a set X⊂ Zn,consider the subspace (X, TnX ) induced from (Zn, Tn). Considering a k-adjacency on (X, TnX ), we call it a (computer topological) space with k-adjacency and use the notation (X, k, TnX ) := Xn,k. In this paper we introduce the notions of KD-(k0, k1)-homotopy equivalence and KD-kdeformation retract and investigate a classification of (computer topological)spaces Xn,k in terms of a KD-(k0, k1)-homotopy equivalence.

      더보기

      참고문헌 (Reference)

      1 T. Y. Kong, "Topological Algorithms for the Digital Image Processing" Elsevier Science 1996

      2 S. E. Han, "The k-homotopic thinning and a torus-like digital image in Zn" 31 (31): 1-16, 2008

      3 I.-S. Kim, "The almost pasting property of digital continuity" 110 (110): 399-408, 2010

      4 한상언, "Strong $k$-deformation retract and its applications" 대한수학회 44 (44): 1479-1503, 2007

      5 Sang-Eon Han, "REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE" 호남수학회 29 (29): 101-118, 2007

      6 L. Boxer, "Properties of digital homotopy" 22 (22): 19-26, 2005

      7 S. E. Han, "On the classification of the digital images up to a digital homotopy equivalence" 10 : 194-207, 2000

      8 Sang-Eon Han, "On computer topological function space" 대한수학회 46 (46): 841-857, 2009

      9 Sang-Eon Han, "ON THE SIMPLICIAL COMPLEX STEMMED FROM A DIGITAL GRAPH" 호남수학회 27 (27): 115-129, 2005

      10 S. E. Han, "Non-product property of the digital fundamental group" 171 (171): 73-91, 2005

      1 T. Y. Kong, "Topological Algorithms for the Digital Image Processing" Elsevier Science 1996

      2 S. E. Han, "The k-homotopic thinning and a torus-like digital image in Zn" 31 (31): 1-16, 2008

      3 I.-S. Kim, "The almost pasting property of digital continuity" 110 (110): 399-408, 2010

      4 한상언, "Strong $k$-deformation retract and its applications" 대한수학회 44 (44): 1479-1503, 2007

      5 Sang-Eon Han, "REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE" 호남수학회 29 (29): 101-118, 2007

      6 L. Boxer, "Properties of digital homotopy" 22 (22): 19-26, 2005

      7 S. E. Han, "On the classification of the digital images up to a digital homotopy equivalence" 10 : 194-207, 2000

      8 Sang-Eon Han, "On computer topological function space" 대한수학회 46 (46): 841-857, 2009

      9 Sang-Eon Han, "ON THE SIMPLICIAL COMPLEX STEMMED FROM A DIGITAL GRAPH" 호남수학회 27 (27): 115-129, 2005

      10 S. E. Han, "Non-product property of the digital fundamental group" 171 (171): 73-91, 2005

      11 Sang-Eon Han, "Minimal digital pseudotorus with k-adjacency,k∈{6,18,26}" 호남수학회 26 (26): 237-246, 2004

      12 S. E. Han, "Map preserving local properties of a digital image" 104 (104): 177-190, 2008

      13 R. Malgouyres, "Homotopy in two-dimensional digital images" 230 (230): 221-233, 2000

      14 R. Ayala, "Homotopy in digital spaces" 125 (125): 3-24, 2003

      15 J. Dontchev, "Groups of µ-generalized homeomorphisms and the digital line" 95 (95): 113-128, 1999

      16 S. E. Han, "Extension of several continuities in computer topology"

      17 E. Melin, "Extension of continuous functions in digital spaces with the Khalimsky topology" 153 (153): 52-65, 2005

      18 S. E. Han, "Erratum to: “Non-product property of the digital fundamental group”" 176 (176): 215-216, 2006

      19 S. E. Han, "Equivalent (k0, k1)-covering and generalized digital lifting" 178 (178): 550-561, 2008

      20 P. Alexandroff, "Diskrete R¨aume" 2 : 501-519, 1937

      21 S. E. Han, "Discrete Homotopy of a Closed k-Surface" Springer-Verlag 4040 : 214-225, 2006

      22 L. Boxer, "Digitally continuous functions" 15 : 833-839, 1994

      23 A. Rosenfeld, "Digital topology" 86 (86): 621-630, 1979

      24 S. E. Han, "Digital graph (k0, k1)-homotopy equivalence and its applications"

      25 J. ˇSlapal, "Digital Jordan curves" 153 (153): 3255-3264, 2006

      26 김인수, "DIGITAL COVERING THEORY AND ITS APPLICATIONS" 호남수학회 30 (30): 589-602, 2008

      27 Sang-Eon Han, "Continuities and homeomorphisms in computer topology and their applications" 대한수학회 45 (45): 923-952, 2008

      28 S. E. Han, "Connected sum of digital closed surfaces" 176 (176): 332-348, 2006

      29 S. E. Han, "Computer topology and its applications" 25 (25): 153-162, 2003

      30 E. Khalimsky, "Computer graphics and connected topologies on finite ordered sets" 36 (36): 1-17, 1991

      31 Sang-Eon Han, "Comparison between digital continuity and computer continuity" 호남수학회 26 (26): 331-339, 2004

      32 S. E. Han, "Algorithm for discriminating digital images with respect to a digital (k0, k1)-homeomorphism" 18 (18): 505-512, 2005

      33 T. Y. Kong, "A digital fundamental group" 13 : 159-166, 1989

      34 L. Boxer, "A classical construction for the digital fundamental group" 10 (10): 51-62, 1999

      35 G. Gierz, "A Compendium of Continuous Lattices" Springer-Verlag 1980

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.4 0.14 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.375 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼