RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Performance of deep learning approaches for detection and classification of ceramic tile defects

      한글로보기

      https://www.riss.kr/link?id=A108505486

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Ceramic tiles are in high demand in the infrastructure and building development industries due to their low cost, ease ofinstallation, maintenance, moisture resistance, and availability in a broad range of colors, textures, and sizes. Automatedfacilit...

      Ceramic tiles are in high demand in the infrastructure and building development industries due to their low cost, ease ofinstallation, maintenance, moisture resistance, and availability in a broad range of colors, textures, and sizes. Automatedfacilities, which produce hundreds of tiles in every segment, require a tremendous volume of output. Because of the largenumber of tiles produced and the frequency with which they are produced, it is impossible to manually examine them forfaults, necessitating the use of a rapid, efficient, and reliable automated process. However, while the process of detecting flawsand categorizing them (or classification) is not as efficient as it might be, recent advances in computing technology,mathematical modeling, and high-resolution picture capture equipment have given rise to new prospects in the subject. Manykinds of literature on using these systems for the same goal are currently accessible. Deep learning is a type of artificialintelligence that helps people makes decisions. In production applications, image detection of faulty Ceramic Tile Surfaces isa critical skill. Deep learning is now being studied for its potential application in automated defect identification. As a result,we propose Deep Learning approaches that take advantage of the transform domain properties of the tiles image. The model'scapacity to learn via the system makes it versatile and dynamically customizable. Different deep learning-based fault detectionand classification transfer learning approaches are examined in this study.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼