RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      최적 EN를 사용한 MNN에 의한 Mobile Robot제어

      한글로보기

      https://www.riss.kr/link?id=A76129184

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      이동로봇(Mobile Robot)의 자율주행 기능에는 추종, 접근, 충돌회피, 경고 등의 여러 기능이 있다. 이 기능들을 하나의 Neural Network로 구성하고 학습하는 것은 쉬운 일이 아니다. 이동로봇의 자율주행 기능들을 각각의 Module로 구성하고 상황에 맞게 학습된 Module의 출력 값으로 이동로봇을 제어하면 단일 신경망의 단점을 보안할 수 있을 것이다. 이동로봇은 인간의 감각을 대신할 수 있는 다중 초음파 센서와 USB 카메라를 장착하고 있으며, 이곳에서 측정된 환경정보 데이터들은 Modular Neural Network(MNN)을 통해 학습을 한다. Expert Network(EN)의 활성화 함수를 최적결합으로 MNN을 구성하였고, 그 구조는 학습시간과 오차를 개선할 수 있을 것으로 본다. Gating Network(GN)는 MNN의 출력값인 이동로봇의 진행 방향과 속도를 스위칭 함으로써 제어하는 역할을 한다.
      본 논문에서는 Modular Neural Network(MNN) 내의 Expert Network(EN)을 최적설계 하였고, 제안한 MNN의 검증을 위해 실시간으로 반복하여 이동로봇에 구현하였다. 그 실험의 결과값은 로봇을 상황에 맞게 운행, 제어하였고, 만족할 만한 성과를 얻을 수 있었다.
      번역하기

      이동로봇(Mobile Robot)의 자율주행 기능에는 추종, 접근, 충돌회피, 경고 등의 여러 기능이 있다. 이 기능들을 하나의 Neural Network로 구성하고 학습하는 것은 쉬운 일이 아니다. 이동로봇의 자율...

      이동로봇(Mobile Robot)의 자율주행 기능에는 추종, 접근, 충돌회피, 경고 등의 여러 기능이 있다. 이 기능들을 하나의 Neural Network로 구성하고 학습하는 것은 쉬운 일이 아니다. 이동로봇의 자율주행 기능들을 각각의 Module로 구성하고 상황에 맞게 학습된 Module의 출력 값으로 이동로봇을 제어하면 단일 신경망의 단점을 보안할 수 있을 것이다. 이동로봇은 인간의 감각을 대신할 수 있는 다중 초음파 센서와 USB 카메라를 장착하고 있으며, 이곳에서 측정된 환경정보 데이터들은 Modular Neural Network(MNN)을 통해 학습을 한다. Expert Network(EN)의 활성화 함수를 최적결합으로 MNN을 구성하였고, 그 구조는 학습시간과 오차를 개선할 수 있을 것으로 본다. Gating Network(GN)는 MNN의 출력값인 이동로봇의 진행 방향과 속도를 스위칭 함으로써 제어하는 역할을 한다.
      본 논문에서는 Modular Neural Network(MNN) 내의 Expert Network(EN)을 최적설계 하였고, 제안한 MNN의 검증을 위해 실시간으로 반복하여 이동로봇에 구현하였다. 그 실험의 결과값은 로봇을 상황에 맞게 운행, 제어하였고, 만족할 만한 성과를 얻을 수 있었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Skills in tracing of the MR divide into following, approaching, avoiding and warning and so on. It is difficult to have all these skills learned as neural network. To make this up for, skills consisted of each module, and Mobile Robot was controlled by the output of module adequate for the situation. A mobile Robot was equipped multi-ultrasonic sensor and a USB Camera, which can be in place of human sense, and the measured environment information data is learned through Modular Neural Network. MNN consisted of optimal combination of activation function in the Expert Network and its structure seemed to improve learning time and errors. The Gating Network(GN) used to control output values of the MNN by switching for angle and speed of the robot.
      In the paper, EN of Modular Neural network was designed optimal combination. Traveling with a real MR was performed repeatedly to verity the usefulness of the MNN which was proposed in this paper. The robot was properly controlled and driven by the result value and the experimental is rewarded with good fruits.
      번역하기

      Skills in tracing of the MR divide into following, approaching, avoiding and warning and so on. It is difficult to have all these skills learned as neural network. To make this up for, skills consisted of each module, and Mobile Robot was controlled b...

      Skills in tracing of the MR divide into following, approaching, avoiding and warning and so on. It is difficult to have all these skills learned as neural network. To make this up for, skills consisted of each module, and Mobile Robot was controlled by the output of module adequate for the situation. A mobile Robot was equipped multi-ultrasonic sensor and a USB Camera, which can be in place of human sense, and the measured environment information data is learned through Modular Neural Network. MNN consisted of optimal combination of activation function in the Expert Network and its structure seemed to improve learning time and errors. The Gating Network(GN) used to control output values of the MNN by switching for angle and speed of the robot.
      In the paper, EN of Modular Neural network was designed optimal combination. Traveling with a real MR was performed repeatedly to verity the usefulness of the MNN which was proposed in this paper. The robot was properly controlled and driven by the result value and the experimental is rewarded with good fruits.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. Modular Neural Network
      • 3. MultiLayer Neural Network 구조
      • 요약
      • Abstract
      • 1. 서론
      • 2. Modular Neural Network
      • 3. MultiLayer Neural Network 구조
      • 4. Mobile Robot System
      • 5. 시뮬레이션 / 구현
      • 6. 결론 및 향후과제
      • 참고문헌
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼