RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      프로필렌의 화재 및 폭발 위험성 평가를 위한 온도 200 oC에서 산소농도와 압력의 변화에 따른 실험적 연구 = Experimental Study on the Changes in the Oxygen Concentration and the Pressure at Temperature of 200 oC for the Assessment of the Risks of Fire and Explosion of Propylene

      한글로보기

      https://www.riss.kr/link?id=A106981493

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Propylene is widely used in petrochemical manufacturing at over 200 ℃. However, since propylene is a flammable gas with fire and explosion risks, inert nitrogen is injected to prevent them. In this study, experiments were conducted using propylene-nitrogen-oxygen upon pressure changes at 200 ℃. At 21% oxygen, as pressure increased from 0.10 MPa to 0.25 MPa, lower explosion limit (LEL) decreased from 2.2% to 1.9% while upper explosion limit (UEL) increased from 14.8% to 17.6%. In addition, minimum oxygen concentration (MOC) decreased from 10.3% to 10.0%, indicating higher risks with the expanded explosive range as pressure increased. With increase of pressure from 0.10 MPa to 0.25 MPa, explosion pressure increased from 1.84 MPa to 6.04 MPa, and the rate of rise of maximum explosion pressure increased drastically from 90 MPa/s to 298 MPa/s. It is hoped that these results can be used as basic data to prevent accidents in factories using propylene.
      번역하기

      Propylene is widely used in petrochemical manufacturing at over 200 ℃. However, since propylene is a flammable gas with fire and explosion risks, inert nitrogen is injected to prevent them. In this study, experiments were conducted using propylene-n...

      Propylene is widely used in petrochemical manufacturing at over 200 ℃. However, since propylene is a flammable gas with fire and explosion risks, inert nitrogen is injected to prevent them. In this study, experiments were conducted using propylene-nitrogen-oxygen upon pressure changes at 200 ℃. At 21% oxygen, as pressure increased from 0.10 MPa to 0.25 MPa, lower explosion limit (LEL) decreased from 2.2% to 1.9% while upper explosion limit (UEL) increased from 14.8% to 17.6%. In addition, minimum oxygen concentration (MOC) decreased from 10.3% to 10.0%, indicating higher risks with the expanded explosive range as pressure increased. With increase of pressure from 0.10 MPa to 0.25 MPa, explosion pressure increased from 1.84 MPa to 6.04 MPa, and the rate of rise of maximum explosion pressure increased drastically from 90 MPa/s to 298 MPa/s. It is hoped that these results can be used as basic data to prevent accidents in factories using propylene.

      더보기

      참고문헌 (Reference)

      1 최유정, "프로필렌의 공정안전 운전을 위한 CO2 첨가량에 따른 폭발범위 측정에 관한 연구" 한국산학기술학회 20 (20): 599-606, 2019

      2 김원길, "옥탄가 변화에 따른 가솔린의 폭발한계 및 최소산소농도 측정" 한국화학공학회 55 (55): 618-622, 2017

      3 조영도, "밀폐공간에서 메탄 폭발사고의 최소 가스누출량 예측" 한국가스학회 21 (21): 1-5, 2017

      4 이창진, "디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구" 한국화학공학회 57 (57): 790-803, 2019

      5 하동명, "노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측" 한국화학공학회 56 (56): 474-478, 2018

      6 Razus, D., "Temperature and Pressure Influence on Explosion Pressures of Closed Vessel Propaneair Deflagrations" 174 : 548-555, 2010

      7 Liu, S., "Self-adaptive Chaotic Local Search Particle Swarm Optimization for Propylene Explosion Region Parameter Identification" 1702-1707, 2019

      8 Mathieu, D., "Power Low Expressions for Predicting Lower and Upper Flammability Limit Temperature" 52 (52): 9317-9322, 2013

      9 Korzyński, M. D., "Oxidative Dehydrogenation of Propane on the Realm of Metal-Organic Framework" 10-12, 2017

      10 Leffler, W. L., "Natural Gas Liquids: A Nontechnical Guide" PennWell Books 112-115, 2014

      1 최유정, "프로필렌의 공정안전 운전을 위한 CO2 첨가량에 따른 폭발범위 측정에 관한 연구" 한국산학기술학회 20 (20): 599-606, 2019

      2 김원길, "옥탄가 변화에 따른 가솔린의 폭발한계 및 최소산소농도 측정" 한국화학공학회 55 (55): 618-622, 2017

      3 조영도, "밀폐공간에서 메탄 폭발사고의 최소 가스누출량 예측" 한국가스학회 21 (21): 1-5, 2017

      4 이창진, "디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구" 한국화학공학회 57 (57): 790-803, 2019

      5 하동명, "노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측" 한국화학공학회 56 (56): 474-478, 2018

      6 Razus, D., "Temperature and Pressure Influence on Explosion Pressures of Closed Vessel Propaneair Deflagrations" 174 : 548-555, 2010

      7 Liu, S., "Self-adaptive Chaotic Local Search Particle Swarm Optimization for Propylene Explosion Region Parameter Identification" 1702-1707, 2019

      8 Mathieu, D., "Power Low Expressions for Predicting Lower and Upper Flammability Limit Temperature" 52 (52): 9317-9322, 2013

      9 Korzyński, M. D., "Oxidative Dehydrogenation of Propane on the Realm of Metal-Organic Framework" 10-12, 2017

      10 Leffler, W. L., "Natural Gas Liquids: A Nontechnical Guide" PennWell Books 112-115, 2014

      11 "NFPA 68, Standard on Explosion Protection by Deflagrations Vending"

      12 "NFPA 68, Guide for Venting Deflagrations"

      13 Giurcan, V., "Influence of Inert Additives on Smallscale Closed Vessel Explosions of Propaneair Mixture" 111 : 102939-, 2020

      14 Cengel, Y. A., "Fluid Mechanics: Fundamentals and Applications 4 edition in SI units" Mc Graw-Hill 40-42, 2019

      15 Zhang, B., "Explosion Characteristics of Argon/nitrogen Diluted Natural Gas-air Mixtures" 124 : 125-132, 2014

      16 Luo, Z., "Effects of a Carbon Monoxide-dominant Gas Mixture on the Explosion and Flame Propagation Behaviors of Methane in Air" 58 : 8-16, 2019

      17 Yu, X., "Effect of Superambient Conditions on the Upper Explosion Limit of Ethane/oxygen and Ethylene/oxygen Mixtures" 59 : 100-105, 2019

      18 Chen, S., "Effect of Initial Temperature and Initial Pressure on vapor Explosion Characteristics of Nitro Thinner" 61 : 298-304, 2019

      19 Yan, X. T., "Chemical Vapour Deposition: An Integrated Engineering Design for Advanced Materials" Springer 29-30, 2010

      20 Crowl, D. A., "Chemical Process Safety: Fundamentals with Application"

      21 백주홍, "CFD 모델링을 이용한 화학공장의 안전거리 산정 방법론에 관한 연구" 한국안전학회 31 (31): 162-167, 2016

      22 Razus, D., "Burning Velocity Determination by Spherical Bomb Technique. Part II. Application to Gaseous Propylene-air Mixtures of Various Compositions, Pressure and Temperatures" 45 : 319-330, 2000

      23 "ASTM E918-83, Standard Practice for Determinimg Limits of Flammability of Chemicals at Elecated Temperature and Pressure"

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-12-02 학술지명변경 한글명 : 화학공학 -> Korean Chemical Engineering Research(HWAHAK KONGHAK) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-08-25 학술지명변경 외국어명 : Korean Chem. Eng. Res. -> Korean Chemical Engineering Research KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-09-27 학회명변경 영문명 : The Korean Institute Of Chemical Engineers -> The Korean Institute of Chemical Engineers KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.43 0.43 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.35 0.496 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼