RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Using Principal Component Analysis to Characterize the Variability of VLF Wave Intensities Measured by a Low‐Altitude Spacecraft and Caused by Interplanetary Shocks

      한글로보기

      https://www.riss.kr/link?id=O111296409

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2021년

      • 작성언어

        -

      • Print ISSN

        2169-9380

      • Online ISSN

        2169-9402

      • 등재정보

        SCOPUS;SCIE

      • 자료형태

        학술저널

      • 수록면

        n/a-n/a   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Very low frequency wave intensity measurements provided by the French low‐altitude DEMETER spacecraft are studied using the principal component analysis (PCA). We focus on both the physical interpretation of the first two principal components and their application to real physical problems. Variations of the first principal component (PC1) coefficients due to the geomagnetic activity and seasonal/longitudinal changes are studied. It is shown that their distribution corresponds to the wave intensity dependences obtained in previous studies. Moreover, the variations of PC1 coefficients around interplanetary shock arrivals are analyzed. The study is performed for fast forward (FF), fast reverse, slow forward, and slow reverse shocks separately. It shows that the most significant effect on the wave intensity is displayed in the FF case. Furthermore, it turns out that the wave intensity variations depend on the wave intensity detected before the shock arrival. Finally, the shock strength and interplanetary magnetic field orientation are also important. The performed analysis shows that PCA can be successfully applied to characterize large data sets of spacecraft measurements by limited sets of numbers—principal component coefficients (typically first one or two are enough), which still maintain a sufficient amount of information.



      The principal component analysis is used to describe very low‐frequency wave intensity measured by the low‐altitude spacecraft DEMETER

      First principal components are shown to correspond to the overall wave intensity measured in individual frequency‐latitude spectrograms

      First principal component coefficients around the times of fast forward interplanetary shock arrivals exhibit systematic variations


      The principal component analysis is used to describe very low‐frequency wave intensity measured by the low‐altitude spacecraft DEMETER
      First principal components are shown to correspond to the overall wave intensity measured in individual frequency‐latitude spectrograms
      First principal component coefficients around the times of fast forward interplanetary shock arrivals exhibit systematic variations
      번역하기

      Very low frequency wave intensity measurements provided by the French low‐altitude DEMETER spacecraft are studied using the principal component analysis (PCA). We focus on both the physical interpretation of the first two principal components and th...

      Very low frequency wave intensity measurements provided by the French low‐altitude DEMETER spacecraft are studied using the principal component analysis (PCA). We focus on both the physical interpretation of the first two principal components and their application to real physical problems. Variations of the first principal component (PC1) coefficients due to the geomagnetic activity and seasonal/longitudinal changes are studied. It is shown that their distribution corresponds to the wave intensity dependences obtained in previous studies. Moreover, the variations of PC1 coefficients around interplanetary shock arrivals are analyzed. The study is performed for fast forward (FF), fast reverse, slow forward, and slow reverse shocks separately. It shows that the most significant effect on the wave intensity is displayed in the FF case. Furthermore, it turns out that the wave intensity variations depend on the wave intensity detected before the shock arrival. Finally, the shock strength and interplanetary magnetic field orientation are also important. The performed analysis shows that PCA can be successfully applied to characterize large data sets of spacecraft measurements by limited sets of numbers—principal component coefficients (typically first one or two are enough), which still maintain a sufficient amount of information.



      The principal component analysis is used to describe very low‐frequency wave intensity measured by the low‐altitude spacecraft DEMETER

      First principal components are shown to correspond to the overall wave intensity measured in individual frequency‐latitude spectrograms

      First principal component coefficients around the times of fast forward interplanetary shock arrivals exhibit systematic variations


      The principal component analysis is used to describe very low‐frequency wave intensity measured by the low‐altitude spacecraft DEMETER
      First principal components are shown to correspond to the overall wave intensity measured in individual frequency‐latitude spectrograms
      First principal component coefficients around the times of fast forward interplanetary shock arrivals exhibit systematic variations

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼