RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Comparison of data analysis procedures for real-time nanoparticle sampling data using classical regression and ARIMA models

      한글로보기

      https://www.riss.kr/link?id=A107437782

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Real-time monitoring is necessary for nanoparticle exposure assessment to characterize the exposure profile, but the data produced are autocorrelated. This study was conducted to compare three statistical methods used to analyze data, which c...

      <P>Real-time monitoring is necessary for nanoparticle exposure assessment to characterize the exposure profile, but the data produced are autocorrelated. This study was conducted to compare three statistical methods used to analyze data, which constitute autocorrelated time series, and to investigate the effect of averaging time on the reduction of the autocorrelation using field data. First-order autoregressive (AR(1)) and autoregressive-integrated moving average (ARIMA) models are alternative methods that remove autocorrelation. The classical regression method was compared with AR(1) and ARIMA. Three data sets were used. Scanning mobility particle sizer data were used. We compared the results of regression, AR(1), and ARIMA with averaging times of 1, 5, and 10min. AR(1) and ARIMA models had similar capacities to adjust autocorrelation of real-time data. Because of the non-stationary of real-time monitoring data, the ARIMA was more appropriate. When using the AR(1), transformation into stationary data was necessary. There was no difference with a longer averaging time. This study suggests that the ARIMA model could be used to process real-time monitoring data especially for non-stationary data, and averaging time setting is flexible depending on the data interval required to capture the effects of processes for occupational and environmental nano measurements.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼