RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Electro‐chemomechanical Contribution to Mechanical Actuation in Gd‐Doped Ceria Membranes

      한글로보기

      https://www.riss.kr/link?id=O113285040

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Gd‐doped ceria (CGO), one of the most extensively studied oxygen ion conductors, is a low dielectric constant/low mechanical compliance material exhibiting large nonclassical electrostriction. The electromechanical response of the micro‐electromec...

      Gd‐doped ceria (CGO), one of the most extensively studied oxygen ion conductors, is a low dielectric constant/low mechanical compliance material exhibiting large nonclassical electrostriction. The electromechanical response of the micro‐electromechanical devices with CGO films as an active material described previously can not be attributed exclusively to electrostriction. Here it is shown that, below 1 Hz, in addition to electrostriction (second‐harmonic response), there is a strong contribution of the electro‐chemomechanical effect (ECM, first harmonic response). ECM is the change in mechanical dimensions of ionic and mixed ionic‐electronic conductors as a result of a change in chemical composition induced by an electric field. In batteries, the presence of ECM is highly detrimental. In ceria at room temperature, it was considered to be negligible because of slow oxygen diffusion. This work demonstrates ECM actuation at ambient temperature and moderate electric field (<5 V µm−1). ECM‐induced strain is attributed to reversible oxidation/ reduction of TiO2 layers at the Ti‐CGO interface. At 25 °C, the ECM bending strain is 1.2 × 10−6, increasing exponentially with temperature. These data suggest that with a proper choice of materials, ECM‐type response can be a viable mechanism for mechanical actuation at ambient and also at slightly elevated temperatures.
      Electromechanical response of Al/Ti/Ce0.8Gd0.2O1.9/Ti/Al structure consists of two contributions: electrostriction at the second harmonic (top panel), which involves in‐plane expansion, and the electro‐chemomechanical effect at the first harmonic (bottom panel), which originates from oxidation/reduction of Ti at the Ce0.8Gd0.2O1.9/Ti interface.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼