Dryden, Mardia(2016)는 형상분석(shape analysis)을 기하적 공간상에서 형상점들(landmarks)에 의해 나타낸 개체들(objects)의 형상(shape)을 측정 및 기술하며 이를 비교하는 분석이라 정의한다. 형상분석에...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A109671914
2025
-
형상분석 ; GPA적합 ; 형태행렬 ; 랜덤 포레스트 ; 로지스틱회귀 ; Shape analysis ; GPA fit ; Configuration matrix ; Random Forest ; Logistic regression ; SVM
310
KCI등재
학술저널
451-463(13쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
Dryden, Mardia(2016)는 형상분석(shape analysis)을 기하적 공간상에서 형상점들(landmarks)에 의해 나타낸 개체들(objects)의 형상(shape)을 측정 및 기술하며 이를 비교하는 분석이라 정의한다. 형상분석에...
Dryden, Mardia(2016)는 형상분석(shape analysis)을 기하적 공간상에서 형상점들(landmarks)에 의해 나타낸 개체들(objects)의 형상(shape)을 측정 및 기술하며 이를 비교하는 분석이라 정의한다. 형상분석에 활용되는 형상점 자료는 배열(array)의 형태를 가지고 있는데, 이는 형상의 분류모형에 적용하기 어려움이 있는 형태이다. 본 연구는 형상점 자료를 분류모형에 적용하기 위한 두가지 방법을 제시한다. 첫 번째 방법은 GPA(Generalized Procrustes Analysis) 적합을 적용한 후 리만거리, 중심크기 및 형상주성분분석을 통한 형상 주성분점수를 얻어내어 이를 변수로 선택하는 방법이고, 두 번째 방법은 각 표본의 형태행렬(configuration matrix)을 벡터화하는 과정을 진행하여 좌푯값들을 모두 변수로써 사용하는 방법이다. 새롭게 얻어진 자료들을 랜덤 포레스트(random forest), 로지스틱 회귀분석(logistic regression analysis), 그리고 서포트벡터머신(support vector machine, SVM) 등 3가지의 분류모형에 투입하여 자료별 오분류율을 비교한다. 이를 위하여 Dryden, Mardia(2016)의 세 군집의 척추뼈 형상자료인 쥐(mice) 자료에 대하여 위의 방법을 적용하였다. 특히, 이 자료는 형상점의 수가 적은 2차원 자료인데 회전 모수가 군집 결정에 영향이 컸으며, 적합과정이 이루어지지 않은 원자료나 중심화 자료의 벡터화가 더 좋은 결과를 보였다.
다국어 초록 (Multilingual Abstract)
Dryden, Mardia (2016) define shape analysis as an analysis that measures and describes the shapes of objects represented by landmarks in geometric space and compares them. The shape point data used for shape analysis has the form of an array, which is...
Dryden, Mardia (2016) define shape analysis as an analysis that measures and describes the shapes of objects represented by landmarks in geometric space and compares them. The shape point data used for shape analysis has the form of an array, which is a form that is difficult to apply to the shape classification model. This study presents two methods for applying shape point data to the classification model. The first method is to apply the Generalized Prospects Analysis (GPA) fit and then obtain Riemannian distance, centroid size, and shape PC scores to select them as variables, and the second method is to vectorize the configuration matrix of each sample to use all coordinate values as variables. The data obtained by these two methods are put into three classification models: Random Forest, Logistic Regression Analysis, and SVM to compare the misclassification rates for each data. To this end, the method above was applied to the mice data from Dryden, Mardia (2016), and the results were examined. The comparison revealed that the mice data of three clusters, which is a 2-dimensional data set with a small number of shape points, showed that the rotation parameter had a significant impact on cluster determination. Additionally, vectorization of the original data or centered data, which had not undergone the fitting process, yielded better results.
직장환경에서 소외 두려움(FoMO)의 양면성이 스트레스 평가에 미치는 영향: 일 관련 반추의 매개효과와 직무자율성의 조절 역할
사회불안과 관계적 공격성의 관계에서 의도적 통제 수준에 따른 분노반추의 매개효과
과수 생장정보와 기상정보를 이용한 ‘신고’ 배나무의 수액 흐름 예측 모형 개발