The transfer of plasmid-borne genes coding for resistance to antibiotics (Ampicillin, Carbenicillin, and tetracycline) among 16 strains isolated from Mankyong River was examined. The survival of donors, recipient, and transformants in sterile and ...
The transfer of plasmid-borne genes coding for resistance to antibiotics (Ampicillin, Carbenicillin, and tetracycline) among 16 strains isolated from Mankyong River was examined. The survival of donors, recipient, and transformants in sterile and nonsterile soil (the soil was amended with 12% vol/vol with the clay mineral, montmorillonite) was also studied. In sterile soil, the survival was prolonged in the order of donors, transformants, and recipient. The survival of donors, transformants, and recipient increased when the soil was amended with 12% montmorillonite, but not in nonsterile soil. In nonsterile soil, donors survived longer than transformants and recipient, but the survival of transformants and recipient showed no significant differences. The results of these studies suggest that genes can be transferred by transformation, and transferred genes can survive in soil for a considerable time.