RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Statistical methods for correlated data from observational studies.

      한글로보기

      https://www.riss.kr/link?id=T14029475

      • 저자
      • 발행사항

        [S.l.]: The University of North Carolina at Chapel Hill 2015

      • 학위수여대학

        The University of North Carolina at Chapel Hill Biostatistics

      • 수여연도

        2015

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        144 p.

      • 지도교수/심사위원

        Advisers: Jianwen Cai; Haibo Zhou.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      소속기관이 구독 중이 아닌 경우 오후 4시부터 익일 오전 9시까지 원문보기가 가능합니다.

      부가정보

      다국어 초록 (Multilingual Abstract)

      Randomized clinical trials are generally considered the 'gold standard' in establishing causal relationship due to its ability to balance distributions of subject characteristics across treatment groups. Since the treatment assignment is not confounded with the patient's baseline characteristics, treatment effect can be estimated simply by comparing outcomes between treated and untreated groups. Due to ethical and other concerns, randomized trials are not always an option. Researchers sometimes rely on observational study designs to investigate the relationship between outcome and exposure and other covariates. In this dissertation, we investigate statistical methods for analyzing correlated data from observational studies.
      First, we consider case-cohort studies with multiple disease outcomes. The case-cohort design is widely used in large cohort studies when it is prohibitively costly to measure some exposures for all subjects in the full cohort, especially in studies where the disease rate is low. To investigate the effect of a risk factor on different diseases, multiple case-cohort studies using the same subcohort are usually conducted. To compare the effect of a risk factor on different types of diseases, times to different disease events need to be modeled simultaneously. Existing case-cohort estimators for multiple disease outcomes utilize only the relevant covariate information in cases and subcohort controls, though many covariates are measured for everyone in the full cohort. Intuitively, making full use of the relevant covariate information can improve efficiency. To this end, we consider a class of doubly-weighted estimators for both regular and generalized case-cohort studies with multiple disease outcomes. The asymptotic properties of the proposed estimators are derived and our simulation studies show that a gain in efficiency can be achieved with a properly chosen weight function. We illustrate the proposed method with a data set from Atherosclerosis Risk in Communities (ARIC) study.
      Second, we investigate marginal structural Cox model for clusters of correlated failure time observations. In causal inference, marginal structural Cox model has been widely used to analyze time-to-event data arising from observational studies, where observations are independent. In many studies, subjects in the same community or clinic form natural clusters and are thus correlated. For example, in INSPIRIS Inc. home visiting provider program, participants from the same region are considered in the same cluster. We formulate marginal structural Cox model for this type of data and prove the consistency and asymptotic normality of the estimator. Simulation studies show that marginal structural Cox model perform properly by yielding unbiased estimate and satisfactory confidence interval coverage. The proposed method is implemented using a claim data assessing the effectiveness of INSPIRIS home visiting health care program.
      Third, we study cluster-based probability-dependent sampling (PDS). As all studies are conducted with a limited budget, the maximum study sizes are often restricted by the cost of the exposure ascertainment. When the outcome is continuous, the two-stage PDS is an appealing sampling scheme that allows investigators to over-sample the two distributional tails of the continuous exposure and to obtain a more informative sample than simple random sample (SRS), without knowing the functional form of the underlying relationship between exposure and outcome. In the Collaborative Perinatal Project (CPP), subjects are clustered within each participating clinic. Statistical method needs to properly account for cluster-level random effects under PDS scheme. We propose estimation and inference procedures based on a semiparametric profile likelihood function. We show that our estimator is consistent and asymptotically normal. In simulation studies, our cluster-based PDS method provides more efficient estimators compared to linear mixed effect models on an SRS of the same size. We also apply the method to a data set from the CPP.
      번역하기

      Randomized clinical trials are generally considered the 'gold standard' in establishing causal relationship due to its ability to balance distributions of subject characteristics across treatment groups. Since the treatment assignment is not confound...

      Randomized clinical trials are generally considered the 'gold standard' in establishing causal relationship due to its ability to balance distributions of subject characteristics across treatment groups. Since the treatment assignment is not confounded with the patient's baseline characteristics, treatment effect can be estimated simply by comparing outcomes between treated and untreated groups. Due to ethical and other concerns, randomized trials are not always an option. Researchers sometimes rely on observational study designs to investigate the relationship between outcome and exposure and other covariates. In this dissertation, we investigate statistical methods for analyzing correlated data from observational studies.
      First, we consider case-cohort studies with multiple disease outcomes. The case-cohort design is widely used in large cohort studies when it is prohibitively costly to measure some exposures for all subjects in the full cohort, especially in studies where the disease rate is low. To investigate the effect of a risk factor on different diseases, multiple case-cohort studies using the same subcohort are usually conducted. To compare the effect of a risk factor on different types of diseases, times to different disease events need to be modeled simultaneously. Existing case-cohort estimators for multiple disease outcomes utilize only the relevant covariate information in cases and subcohort controls, though many covariates are measured for everyone in the full cohort. Intuitively, making full use of the relevant covariate information can improve efficiency. To this end, we consider a class of doubly-weighted estimators for both regular and generalized case-cohort studies with multiple disease outcomes. The asymptotic properties of the proposed estimators are derived and our simulation studies show that a gain in efficiency can be achieved with a properly chosen weight function. We illustrate the proposed method with a data set from Atherosclerosis Risk in Communities (ARIC) study.
      Second, we investigate marginal structural Cox model for clusters of correlated failure time observations. In causal inference, marginal structural Cox model has been widely used to analyze time-to-event data arising from observational studies, where observations are independent. In many studies, subjects in the same community or clinic form natural clusters and are thus correlated. For example, in INSPIRIS Inc. home visiting provider program, participants from the same region are considered in the same cluster. We formulate marginal structural Cox model for this type of data and prove the consistency and asymptotic normality of the estimator. Simulation studies show that marginal structural Cox model perform properly by yielding unbiased estimate and satisfactory confidence interval coverage. The proposed method is implemented using a claim data assessing the effectiveness of INSPIRIS home visiting health care program.
      Third, we study cluster-based probability-dependent sampling (PDS). As all studies are conducted with a limited budget, the maximum study sizes are often restricted by the cost of the exposure ascertainment. When the outcome is continuous, the two-stage PDS is an appealing sampling scheme that allows investigators to over-sample the two distributional tails of the continuous exposure and to obtain a more informative sample than simple random sample (SRS), without knowing the functional form of the underlying relationship between exposure and outcome. In the Collaborative Perinatal Project (CPP), subjects are clustered within each participating clinic. Statistical method needs to properly account for cluster-level random effects under PDS scheme. We propose estimation and inference procedures based on a semiparametric profile likelihood function. We show that our estimator is consistent and asymptotically normal. In simulation studies, our cluster-based PDS method provides more efficient estimators compared to linear mixed effect models on an SRS of the same size. We also apply the method to a data set from the CPP.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼