<P>Gold nanoparticles inhibited osteoclast (OC) formation induced by the receptor activator of nuclear factor-κB ligand (RANKL) in bone marrow-derived macrophages (BMMs). This was accompanied by a decreased level of tartrate-resistant alka...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107574765
2010
-
SCI,SCIE,SCOPUS
학술저널
2209-2213(5쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Gold nanoparticles inhibited osteoclast (OC) formation induced by the receptor activator of nuclear factor-κB ligand (RANKL) in bone marrow-derived macrophages (BMMs). This was accompanied by a decreased level of tartrate-resistant alka...
<P>Gold nanoparticles inhibited osteoclast (OC) formation induced by the receptor activator of nuclear factor-κB ligand (RANKL) in bone marrow-derived macrophages (BMMs). This was accompanied by a decreased level of tartrate-resistant alkaline phosphatase (TRAP) and less activation of nuclear factor (NF)-κB. The nanoparticles also reduced the production of reactive oxygen species (ROS) in response to RANKL and upregulated RANKL-induced glutathione peroxidase-1 (Gpx-1), suggesting a role as an antioxidant in the BMM. The inhibitory effects on OC formation might have been due to elevated defense against oxidative stress.</P>
Tryptophan Boost Caused by Senescence Occurred Independently of Cytoplasmic Glutamine Synthetase
GC-MS Based Metabolite Profiling of Rice Koji Fermentation by Various Fungi