RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery

      한글로보기

      https://www.riss.kr/link?id=A107740802

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>Significant attention has been paid to closed-loop reverse electrodialysis (RED) systems using a thermolytic solution for low-grade waste heat energy recovery. They have several cost benefits when compared with open-loop RED with seawater and...

      <P>Significant attention has been paid to closed-loop reverse electrodialysis (RED) systems using a thermolytic solution for low-grade waste heat energy recovery. They have several cost benefits when compared with open-loop RED with seawater and river water, such as no need of repetitive pretreatment and removal of locational constraints. This study presents the model of RED using ammonium bicarbonate (NH4HCO3), one of the promising solutes for the closed-loop RED, whose ionization has not been clarified. Because of the unclarified electrochemical information of NH4HCO3 electrolyte, the Planck Henderson equation was used to approximate the membrane potential based on conductivity measurements, and the solution resistance was experimentally computed. Furthermore, the experimentally obtained permselectivity of the membrane was applied for a more precise estimate of the membrane potential. We found that the developed NH4HCO3-RED model was in good agreement with the experimental results under various operating conditions. We also characterized the net power density, which considers the pumping loss, by using our model. In our system, the maximum net power density of 0.84 W/m(2) was obtained with an intermembrane distance of 0.1 mm, a flow rate of 3 mL/min, and a concentration ratio of 200 (2 M/0.01 M) as optimum conditions. We expect that this study will improve our understanding of the NH4HCO3-RED system and contribute to relevant modeling studies, using NH4HCO3 or some other compounds, for generating higher energy densities. (C) 2016 Elsevier Ltd. All rights reserved.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼