RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Influence of Gas Content on Performance Effect on Shunt Vane Type Aviation Fuel Pump

      한글로보기

      https://www.riss.kr/link?id=A108092492

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to study the flow law of shunt vane type aviation fuel pump under the condition of gas-liquid mixture transportation, based on the RNG K-ε turbulence model and the Euler-Euler non-uniformity model, using the ANSYS CFX software to calculate a...

      In order to study the flow law of shunt vane type aviation fuel pump under the condition of gas-liquid mixture transportation, based on the RNG K-ε turbulence model and the Euler-Euler non-uniformity model, using the ANSYS CFX software to calculate an aviation fuel pump under different gas content conditions, and analyzing the flow of the fuel pump and the pressure law of the blade pressure. The research shows that the gas phase is mainly distributed in the front section of the long blade suction surface and the back section of the short blade pressure surface. The increased gas content will result in increased liquid velocity in the pump, which makes the gas phase gradually develop towards the suction surface of long and short blades and diffuse to the impeller flow path. The gas content mainly affects the pressure surface load of the fuel pump blades. The pressure load curve fluctuates at the relative position of the short blade (0.5-0.6) and long blade (0.3-0.6) as well as at the end of the blade and decreases with the increase in gas content. The change of pressure fluctuation of the blade is mainly reflected at the junction of long and short blades, and the pressure fluctuation amplitude of the front section of the short blade and middle section of the long blade fluctuates greatly. With the increase in gas content, the pressure fluctuation amplitude at each monitoring point reduces. The research results can provide some reference for the design of aviation fuel pumps.

      더보기

      참고문헌 (Reference)

      1 Minemura, K, "Three-Dimensional Calculation of Air-Water Two-Phase Flows in a Centrifugal Pump Based on a Bubbly Flow Model with Fixed Cavity" 37 (37): 726-735, 1994

      2 Wang, Q. F, "Study on the effect of cavitation on the performance of split vane aviation fuel pump" 36 (36): 21-29, 2021

      3 Liu, S. Q, "Study on centrifugal pump as main fuel pump of Aeroengine" 32 (32): 43-45, 2006

      4 Toshifumi, W, "Rotating Choke and Choked Surge in an Axial Pump Impeller" 2 (2): 232-238, 2009

      5 Wang, W. J, "Research status and Prospect of centrifugal aviation fuel pump" 48 (48): 59-63, 2020

      6 Yakhot, V. V, "Renormalization-group analysis of turbulence" 57 (57): 1722-1724, 1986

      7 Wang, W. J, "Optimization design of centrifugal aviation fuel pump based on splitter blade technology" 54 (54): 557-562, 2021

      8 Liu, R. H, "Numerical simulation of internal flow in centrifugal pump under gas-liquid two-phase flow" 33 (33): 661-666, 2015

      9 Yuan, S. Q, "Numerical simulation of gas-liquid two-phase flow in centrifugal pump based on music model" 39 (39): 325-330, 2021

      10 Li, J, "Multi objective optimization design and simulation analysis of fuel centrifugal pump" 42 (42): 666-674, 2021

      1 Minemura, K, "Three-Dimensional Calculation of Air-Water Two-Phase Flows in a Centrifugal Pump Based on a Bubbly Flow Model with Fixed Cavity" 37 (37): 726-735, 1994

      2 Wang, Q. F, "Study on the effect of cavitation on the performance of split vane aviation fuel pump" 36 (36): 21-29, 2021

      3 Liu, S. Q, "Study on centrifugal pump as main fuel pump of Aeroengine" 32 (32): 43-45, 2006

      4 Toshifumi, W, "Rotating Choke and Choked Surge in an Axial Pump Impeller" 2 (2): 232-238, 2009

      5 Wang, W. J, "Research status and Prospect of centrifugal aviation fuel pump" 48 (48): 59-63, 2020

      6 Yakhot, V. V, "Renormalization-group analysis of turbulence" 57 (57): 1722-1724, 1986

      7 Wang, W. J, "Optimization design of centrifugal aviation fuel pump based on splitter blade technology" 54 (54): 557-562, 2021

      8 Liu, R. H, "Numerical simulation of internal flow in centrifugal pump under gas-liquid two-phase flow" 33 (33): 661-666, 2015

      9 Yuan, S. Q, "Numerical simulation of gas-liquid two-phase flow in centrifugal pump based on music model" 39 (39): 325-330, 2021

      10 Li, J, "Multi objective optimization design and simulation analysis of fuel centrifugal pump" 42 (42): 666-674, 2021

      11 Jiang, X, "Miniaturization of Bubbles by Shock Waves in Gas-Liquid Two-phase Flow in the Venturi Tube" 30 (30): 1068-1076, 2021

      12 Patrick Dupont ; Annie-Claude Bayeul-Lainé ; Antoine Dazin ; Gérard Bois ; Olivier Roussette ; Qiaorui Si, "Leakage Flow Influence on SHF pump model performances" 한국유체기계학회 8 (8): 193-201, 2015

      13 Li, G. D, "Internal flow pattern and stress analysis of centrifugal pump under gas-liquid two-phase condition" 34 (34): 369-374, 2016

      14 Si, Q. R, "Experimental study on internal flow induction characteristics of centrifugal pump under gas-liquid two-phase inflow" 38 (38): 15-21, 2019

      15 Kobayashi, K, "Computational Fluid Dynamics of Cavitating Flow in Mixed Flow Pump with Closed Type Impeller" 3 (3): 113-121, 2010

      16 Xiong, Y. H, "Cavitation performance analysis of aviation fuel pump based on agent model" 37 (37): 2952-2960, 2016

      17 Levy, S, "Application of Mixing Length Theory to Wavy Turbulent Liquid—Gas Interface" 103 (103): 492-500, 1981

      18 Zhong, K. G, "A novel complex network-based deep learning method for characterizing gas-liquid two-phase flow" 18 (18): 259-268, 2021

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2017-09-08 학술지명변경 한글명 : Internation Journal of Fluid Machinery and Systems -> International Journal of Fluid Machinery and Systems
      외국어명 : Internation Journal of Fluid Machinery and Systems -> International Journal of Fluid Machinery and Systems
      KCI등재
      2014-01-08 학회명변경 영문명 : Korean Fluid Machinery Association -> Korean Society for Fluid Machinery KCI등재
      2014-01-08 학술지명변경 외국어명 : 미등록 -> Internation Journal of Fluid Machinery and Systems KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2013-01-09 학회명변경 한글명 : 유체기계공업학회 -> 한국유체기계학회 KCI등재후보
      2012-01-01 평가 SCOPUS 등재 (기타) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0 0 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼