RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A Sketch-based 3D Object Retrieval Approach for Augmented Reality Models Using Deep Learning

      한글로보기

      https://www.riss.kr/link?id=A106610020

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Retrieving a 3D model from a 3D database and augmenting the retrieved model in the Augmented Reality system simultaneously became an issue in developing the plausible AR environments in a convenient fashion. It is considered that the sketch-based 3D o...

      Retrieving a 3D model from a 3D database and augmenting the retrieved model in the Augmented Reality system simultaneously became an issue in developing the plausible AR environments in a convenient fashion. It is considered that the sketch-based 3D object retrieval is an intuitive way for searching 3D objects based on human-drawn sketches as query. In this paper, we propose a novel deep learning based approach of retrieving a sketch-based 3D object as for an Augmented Reality Model. For this work, we introduce a new method which uses Sketch CNN, Wasserstein CNN and Wasserstein center loss for retrieving a sketch-based 3D object. Especially, Wasserstein center loss is used for learning the center of each object category and reducing the Wasserstein distance between center and features of the same category. The proposed 3D object retrieval and augmentation consist of three major steps as follows. Firstly, Wasserstein CNN extracts 2D images taken from various directions of 3D object using CNN, and extracts features of 3D data by computing the Wasserstein barycenters of features of each image. Secondly, the features of the sketch are extracted using a separate Sketch CNN. Finally, we adopt sketch-based object matching method to localize the natural marker of the images to register a 3D virtual object in AR system. Using the detected marker, the retrieved 3D virtual object is augmented in AR system automatically. By the experiments, we prove that the proposed method is efficiency for retrieving and augmenting objects.

      더보기

      참고문헌 (Reference)

      1 Nicolas Bonneel, "Wasserstein barycentric coordinates" Association for Computing Machinery (ACM) 35 (35): 1-10, 2016

      2 L. van der Maaten, "Visualizing highdimensional data using t-SNE" 9 : 2579-2605, 2008

      3 He, Xinwei, "Triplet-Center Loss for Multi-View 3D Object Retrieval"

      4 Vladimir I Bogachev, "The Monge-Kantorovich problem: achievements, connections, and perspectives" IOP Publishing 67 (67): 785-890, 2012

      5 Yossi Rubner, "The Earth Mover’s Distance as a metric for image retrieval" Springer Science and Business Media LLC 40 (40): 99-121, 2000

      6 S. Ferradans, "Static and Dynamic Texture Mixing Using Optimal Transport" 137-148, 2013

      7 Mathias Eitz, "Sketch-based shape retrieval" Association for Computing Machinery (ACM) 31 (31): 1-10, 2012

      8 Fang Wang, "Sketch-based 3D shape retrieval using Convolutional Neural Networks" 2015

      9 M. Eitz, "Sketch-Based Image Retrieval: Benchmark and Bag-of-Features Descriptors" Institute of Electrical and Electronics Engineers (IEEE) 17 (17): 1624-1636, 2011

      10 M. Cuturi, "Sinkhorn distances: Lightspeed computation of optimal transport" 2292-2300, 2013

      1 Nicolas Bonneel, "Wasserstein barycentric coordinates" Association for Computing Machinery (ACM) 35 (35): 1-10, 2016

      2 L. van der Maaten, "Visualizing highdimensional data using t-SNE" 9 : 2579-2605, 2008

      3 He, Xinwei, "Triplet-Center Loss for Multi-View 3D Object Retrieval"

      4 Vladimir I Bogachev, "The Monge-Kantorovich problem: achievements, connections, and perspectives" IOP Publishing 67 (67): 785-890, 2012

      5 Yossi Rubner, "The Earth Mover’s Distance as a metric for image retrieval" Springer Science and Business Media LLC 40 (40): 99-121, 2000

      6 S. Ferradans, "Static and Dynamic Texture Mixing Using Optimal Transport" 137-148, 2013

      7 Mathias Eitz, "Sketch-based shape retrieval" Association for Computing Machinery (ACM) 31 (31): 1-10, 2012

      8 Fang Wang, "Sketch-based 3D shape retrieval using Convolutional Neural Networks" 2015

      9 M. Eitz, "Sketch-Based Image Retrieval: Benchmark and Bag-of-Features Descriptors" Institute of Electrical and Electronics Engineers (IEEE) 17 (17): 1624-1636, 2011

      10 M. Cuturi, "Sinkhorn distances: Lightspeed computation of optimal transport" 2292-2300, 2013

      11 B. Li, "Shrec’13 track: Large scale sketchbased 3D shape retrieval" 89-96, 2013

      12 T. Furuya, "Ranking on cross-domain manifold for sketch-based 3D model retrieval" 274-281, 2013

      13 Y. Wen, "Lecture Notes in Computer Science" 499-515, 2016

      14 J. Xie, "Learning Barycentric Representations of 3D Shapes for Sketch-Based 3D Shape Retrieval" 2017

      15 Jean-David Benamou, "Iterative Bregman Projections for Regularized Transportation Problems" Society for Industrial & Applied Mathematics (SIAM) 37 (37): A1111-A1138, 2015

      16 A. Rolet, "Fast dictionary learning with a smoothed wasserstein loss" 630-638, 2016

      17 F. Schroff, "FaceNet : A unified embedding for face recognition and clustering" 2015

      18 B. Li, "Extended large scale sketch-based 3D shape retrieval" 121-130, 2014

      19 Loris Nanni, "Ensemble of shape descriptors for shape retrieval and classification" Inderscience Publishers 6 (6): 136-156, 2014

      20 R. Hadsell, "Dimensionality Reduction by Learning an Invariant Mapping" 2 : 2006

      21 Richard Sinkhorn, "Diagonal Equivalence to Matrices with Prescribed Row and Column Sums" JSTOR 74 (74): 402-, 1967

      22 K. He, "Deep Residual Learning for Image Recognition" 2016

      23 K.V. Shriram, "An intelligent system of content-based image retrieval for crime investigation" Inderscience Publishers 7 (7): 264-279, 2015

      24 Bo Li, "A comparison of methods for sketch-based 3D shape retrieval" Elsevier BV 119 : 57-80, 2014

      25 Pieter-Tjerk de Boer, "A Tutorial on the Cross-Entropy Method" Springer Science and Business Media LLC 134 (134): 19-67, 2005

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2013-11-05 학술지명변경 외국어명 : Journal of Korean Society for Internet Information -> Journal of Internet Computing and Services KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.55 0.55 0.63
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.64 0.6 0.85 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼