RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      영상의 국부 특징에 기반을 둔 선택적 deinterlacing = A Selective Deinterlacing Based on the Local Feature of Image

      한글로보기

      https://www.riss.kr/link?id=A75847158

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      자연 영상은 일반적으로 에지와 평탄 영역으로 구분된다. 에지 영역 또한 길고 강한 에지, 텍스처 등과 같이 다양한 형태를 가진다. 기존의 deinterlacing 기법들은 주로 하나의 보간 알고리즘을 전체 영상에 적용하기 때문에 영상의 다양한 형태를 반영하기에는 어려움을 가지고 있다. 본 논문은 영상의 영역별 특징을 주출하여 영상의 특성을 반영할 수 있늘 deinterlacing 기법을 제안한다. 제안 방법은 영상을 평탄 영역, 복잡한 에지, 긴 에지로 구분하여 각 영역에 대하여 그 특징에 맞는 보간 알고리즘을 적용한다. 즉, 긴 에지에 대해서는 긴 에지를 잘 보간하는 NEDI(New Edge Directed Interpolation)?? 방법을 개선하여 적용하고, 복잡한 에지에는 고주파를 강조하는 선형 필터??를 사용하고, 평탄 영역에는 쌍선형 보간(bilinear interpolation)을 적용하는 방법을 사용한다. 모의 실험에서 제안된 방법은 영상의 영역에 따른 특성을 반영하지 않은 기존 알고리즘들보다 PSNR과 주관적 화질에서 개선된 성능을 보였다.
      번역하기

      자연 영상은 일반적으로 에지와 평탄 영역으로 구분된다. 에지 영역 또한 길고 강한 에지, 텍스처 등과 같이 다양한 형태를 가진다. 기존의 deinterlacing 기법들은 주로 하나의 보간 알고리즘을...

      자연 영상은 일반적으로 에지와 평탄 영역으로 구분된다. 에지 영역 또한 길고 강한 에지, 텍스처 등과 같이 다양한 형태를 가진다. 기존의 deinterlacing 기법들은 주로 하나의 보간 알고리즘을 전체 영상에 적용하기 때문에 영상의 다양한 형태를 반영하기에는 어려움을 가지고 있다. 본 논문은 영상의 영역별 특징을 주출하여 영상의 특성을 반영할 수 있늘 deinterlacing 기법을 제안한다. 제안 방법은 영상을 평탄 영역, 복잡한 에지, 긴 에지로 구분하여 각 영역에 대하여 그 특징에 맞는 보간 알고리즘을 적용한다. 즉, 긴 에지에 대해서는 긴 에지를 잘 보간하는 NEDI(New Edge Directed Interpolation)?? 방법을 개선하여 적용하고, 복잡한 에지에는 고주파를 강조하는 선형 필터??를 사용하고, 평탄 영역에는 쌍선형 보간(bilinear interpolation)을 적용하는 방법을 사용한다. 모의 실험에서 제안된 방법은 영상의 영역에 따른 특성을 반영하지 않은 기존 알고리즘들보다 PSNR과 주관적 화질에서 개선된 성능을 보였다.

      더보기

      목차 (Table of Contents)

      • Ⅰ. 서 론
      • Ⅱ. 영상 보간 방법
      • Ⅲ. 영상 특성 분할에 의한 선택적인 deinterlacing 방법
      • Ⅳ. 모의 실험 결과
      • Ⅴ. 결 론
      • Ⅰ. 서 론
      • Ⅱ. 영상 보간 방법
      • Ⅲ. 영상 특성 분할에 의한 선택적인 deinterlacing 방법
      • Ⅳ. 모의 실험 결과
      • Ⅴ. 결 론
      • 참 고 문 헌
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼