In this paper we study the existence of global weak solutions for a hyperbolic hemivariational inequalities with boundary source and damping terms, and then investigate the asymptotic stability of the solutions by using Nakao Lemma [8].
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A100987083
2009
English
SCOPUS,KCI등재,ESCI
학술저널
85-97(13쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
In this paper we study the existence of global weak solutions for a hyperbolic hemivariational inequalities with boundary source and damping terms, and then investigate the asymptotic stability of the solutions by using Nakao Lemma [8].
In this paper we study the existence of global weak solutions for a hyperbolic hemivariational inequalities with boundary source and damping terms, and then investigate the asymptotic stability of the solutions by using Nakao Lemma [8].
A NOTE ON THE FIRST LAYERS OF ℤp-EXTENSIONS
STABILITY OF DERIVATIONS ON PROPER LIE CQ*-ALGEBRAS
COMPATIBLE MAPS AND COMMON FIXED POINTS IN MENGER PROBABILISTIC METRIC SPACES