컴퓨터의 발전에 따른 마코브체인 몬테카를로방법을 소프트웨어 신뢰확률모형에 이용하였다. 베이지안 추론에서 조건부분포를 가지고 사후분포를 결정하는데 있어서의 계산문제와 이론적...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106713662
1998
Korean
KCI등재,ESCI
학술저널
377-387(11쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
컴퓨터의 발전에 따른 마코브체인 몬테카를로방법을 소프트웨어 신뢰확률모형에 이용하였다. 베이지안 추론에서 조건부분포를 가지고 사후분포를 결정하는데 있어서의 계산문제와 이론적...
컴퓨터의 발전에 따른 마코브체인 몬테카를로방법을 소프트웨어 신뢰확률모형에 이용하였다. 베이지안 추론에서 조건부분포를 가지고 사후분포를 결정하는데 있어서의 계산문제와 이론적인 정당성을 고려, 마코프연쇄와 메트로폴리스방법의 관계를 고찰하였으며, 특히 Mus-Okumoto와 Erlang(2)의 중첩모형에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하며 베이지안 계산과 예측 우도기준에 의 한 모형선택을 제안하고 Cox-Lewis에 의해 계시된 Thing method를 이용한 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과가 제시되었다.
다국어 초록 (Multilingual Abstract)
A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, we introduced latent variables that indicates with component of the Superposition model. Thi...
A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For each observed failure epoch, we introduced latent variables that indicates with component of the Superposition model. This data augmentation approach facilitates specification of the transitional measure in the Markov Chain. Metropolis algorithms along with Gibbs steps are proposed to preform the Bayesian inference of such models. for model determination, we explored the Pre-quential conditional predictive Ordinate(PCPO) criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. To relax the monotonic intensity function assumptions, we consider in this paper Superposition of Musa-Okumoto and Erlang(2) models. A numerical example with simulated dataset is given.
멀티미디어와 통계 소프트웨어를 활용한 회귀분석 학습 시스템