In recent years, electrochemical energy storage devices, including lithium batteries, supercapacitors, and fuel cells, have surged in development. They play indispensable roles across various domains and significantly enhance the quality of life. Elec...
In recent years, electrochemical energy storage devices, including lithium batteries, supercapacitors, and fuel cells, have surged in development. They play indispensable roles across various domains and significantly enhance the quality of life. Electrochemical energy storage is vital to power systems, managing supply and demand dynamics, mitigating challenges such as intermittent energy fluctuations, and fostering the sustainable advancement of clean energy solutions. Among burgeoning research avenues, DNA is a green biological macromolecule with biodegradability and a unique double-helix structure, attracting attention across diverse fields. This review discusses the myriad applications of DNA in electrochemical energy storage devices and offers insights into novel approaches to leveraging DNA for electrochemical applications. Exploring these potential applications of DNA may unlock innovative pathways to enhancing the efficiency, sustainability, and versatility of electrochemical energy storage technologies. As these efforts continue, DNA promises to transform the ongoing quest for robust and eco-friendly energy solutions.