RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Lumped-Parameter Thermal Analysis and Experimental Validation of Interior IPMSM for Electric Vehicle

      한글로보기

      https://www.riss.kr/link?id=A105630602

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A 50㎾-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.
      번역하기

      A 50㎾-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is ...

      A 50㎾-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. Introduction
      • 2. Lumped Parameter Thermal Network
      • 3. Prototype Manufacture and Test
      • 4. Conclusion
      • Abstract
      • 1. Introduction
      • 2. Lumped Parameter Thermal Network
      • 3. Prototype Manufacture and Test
      • 4. Conclusion
      • References
      더보기

      참고문헌 (Reference)

      1 S. T. Scowby, "Thermal modeling of an axial-flux permanent magnet machine" 24 : 193-207, 2004

      2 J. Nerg, "Thermal analysis of radial-flux electrical machines with a high power density" 55 (55): 3543-3554, 2008

      3 A. M. EL-Refaie, "Thermal analysis of multibarrier interior PM synchronous machine using lumped parameter model" 19 (19): 303-309, 2004

      4 F. Marignetti, "Thermal analysis of an axial flux permanent-magnet synchronous machine" 45 (45): 2009

      5 박찬배, "Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles" 대한전기학회 9 (9): 882-887, 2014

      6 한필완, "Thermal Analysis of High Speed Induction Motor by Using Lumped-Circuit Parameters" 대한전기학회 10 (10): 2040-2045, 2015

      7 A. B. Nachouane, "Numerical study of convective heat transfer in the end regions of a totally enclosed permanent magnet synchronous machine" 53 (53): 3538-3547, 2017

      8 N. Rostami, "Lumped-parameter thermal model for axial flux permanent magnet machines" 49 (49): 1178-1184, 2013

      9 P. D. Mellor, "Lumped parameter thermal model for electrical machines of TEFC design" 138 (138): 205-218, 1991

      10 M. Polikarpova, "Hybrid cooling method of axial-flux permanentmagnet machines for vehicle applications" 62 (62): 7382-7390, 2015

      1 S. T. Scowby, "Thermal modeling of an axial-flux permanent magnet machine" 24 : 193-207, 2004

      2 J. Nerg, "Thermal analysis of radial-flux electrical machines with a high power density" 55 (55): 3543-3554, 2008

      3 A. M. EL-Refaie, "Thermal analysis of multibarrier interior PM synchronous machine using lumped parameter model" 19 (19): 303-309, 2004

      4 F. Marignetti, "Thermal analysis of an axial flux permanent-magnet synchronous machine" 45 (45): 2009

      5 박찬배, "Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles" 대한전기학회 9 (9): 882-887, 2014

      6 한필완, "Thermal Analysis of High Speed Induction Motor by Using Lumped-Circuit Parameters" 대한전기학회 10 (10): 2040-2045, 2015

      7 A. B. Nachouane, "Numerical study of convective heat transfer in the end regions of a totally enclosed permanent magnet synchronous machine" 53 (53): 3538-3547, 2017

      8 N. Rostami, "Lumped-parameter thermal model for axial flux permanent magnet machines" 49 (49): 1178-1184, 2013

      9 P. D. Mellor, "Lumped parameter thermal model for electrical machines of TEFC design" 138 (138): 205-218, 1991

      10 M. Polikarpova, "Hybrid cooling method of axial-flux permanentmagnet machines for vehicle applications" 62 (62): 7382-7390, 2015

      11 A. Boglietti, "Evolution and modern approaches for thermal analysis of electrical machines" 56 (56): 871-882, 2009

      12 B. Zhang, "Development of a yokeless and segmented armature axial flux machine" 63 (63): 2062-2071, 2016

      13 F. Marignetti, "Design of axial flux PM synchronous machines through 3-D coupled electromagnetic thermal and fluid-dynamical finite-element analysis" 55 (55): 3591-3601, 2008

      14 G. Zhang, "Coupled magnetic-thermal fields analysis of water cooling flux-switching permanent magnet motors by an axially segmented model" 53 (53): 8106504-, 2017

      15 H. Vansompel, "Coupled electromagnetic and thermal analysis of an axial flux PM machine" 51 (51): 8108104-, 2015

      16 D. A. Staton, "Convection heat transfer and flow calculations suitable for electric machines thermal models" 55 (55): 3509-3516, 2008

      17 D. A. Howey, "Air-gap convection in rotating electrical machines" 59 (59): 1367-1375, 2012

      18 C. Jungreuthmayer, "A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics" 59 (59): 4568-4578, 2012

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : Journal of Electrical Engineering & Technology(JEET)
      외국어명 : Journal of Electrical Engineering & Technology
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 학술지 통합 (기타) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.21 0.39
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.34 0.372 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼