RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      농업기상 결측치 보정을 위한 통계적 시공간모형 = A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model

      한글로보기

      https://www.riss.kr/link?id=A105498816

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Agricultural meteorological information is an important resource that affects farmers’ income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.
      번역하기

      Agricultural meteorological information is an important resource that affects farmers’ income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricu...

      Agricultural meteorological information is an important resource that affects farmers’ income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

      더보기

      참고문헌 (Reference)

      1 민재식, "인공신경망을 이용한 기상관측장비 결측 보완 기술에관한 연구" 한국디지털정책학회 14 (14): 245-252, 2016

      2 고길곤, "설문자료의 결측치 처리방법에 관한 연구: 다중대체법과 재조사법을 중심으로" 한국행정연구소 54 (54): 291-319, 2016

      3 이기광, "농산물 생산량과 기상요소의 상관관계 분석" 한국환경과학회 21 (21): 461-470, 2012

      4 이형진, "급변온도 변이에 따른 양파의 생리적 특성 및 수량 변화" 한국환경농학회 33 (33): 364-371, 2014

      5 이성덕, "공간시계열모형의 결측치 추정방법 비교" 한국통계학회 17 (17): 263-273, 2010

      6 Bakar, K. S., "spTimer: Spatio-temporal Bayesian modelling using R" 63 : 1-32, 2015

      7 Jang, H. I., "Strategy for fruit cultivation research under the changing climate" 20 : 270-275, 2002

      8 윤상후, "Spatio-temporal models for generating a map of high resolution NO2 level" 한국데이터정보과학회 27 (27): 803-814, 2016

      9 Gelfand, A. E., "Spatial process modeling for univariate and multivariate dynamic spatial data" 16 : 465-479, 2005

      10 Gelfand, A. E., "Sampling-based approaches to calculating marginal densities" 85 : 398-409, 1990

      1 민재식, "인공신경망을 이용한 기상관측장비 결측 보완 기술에관한 연구" 한국디지털정책학회 14 (14): 245-252, 2016

      2 고길곤, "설문자료의 결측치 처리방법에 관한 연구: 다중대체법과 재조사법을 중심으로" 한국행정연구소 54 (54): 291-319, 2016

      3 이기광, "농산물 생산량과 기상요소의 상관관계 분석" 한국환경과학회 21 (21): 461-470, 2012

      4 이형진, "급변온도 변이에 따른 양파의 생리적 특성 및 수량 변화" 한국환경농학회 33 (33): 364-371, 2014

      5 이성덕, "공간시계열모형의 결측치 추정방법 비교" 한국통계학회 17 (17): 263-273, 2010

      6 Bakar, K. S., "spTimer: Spatio-temporal Bayesian modelling using R" 63 : 1-32, 2015

      7 Jang, H. I., "Strategy for fruit cultivation research under the changing climate" 20 : 270-275, 2002

      8 윤상후, "Spatio-temporal models for generating a map of high resolution NO2 level" 한국데이터정보과학회 27 (27): 803-814, 2016

      9 Gelfand, A. E., "Spatial process modeling for univariate and multivariate dynamic spatial data" 16 : 465-479, 2005

      10 Gelfand, A. E., "Sampling-based approaches to calculating marginal densities" 85 : 398-409, 1990

      11 Lee, B. L., "Prospects on agrometeorological information for agricultural applications" 2 (2): 24-30, 2000

      12 Banerjee, S., "Hierarchical modeling and analysis for spatial data" Crc Press 2014

      13 Lee, J., "Determinant Factors of Planted Area and Crop Situation of Red Pepper, Garlic, and Onions" 1995

      14 Yoon, D. K., "Changes of cultivation areas and major disease for spicy vegetables by the change of meteorological factors" 5 (5): 47-59, 2014

      15 Baraldi, A. N., "An Introduction to modern missing data analyses" 48 (48): 5-37, 2010

      16 Cressie, N., "An Approach to statistical spatial-temporal modeling of meteorological elds: Comment" 89 : 379-382, 1994

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2013-02-19 학술지명변경 외국어명 : JOURNAL OF THE ENVIRONMENTAL SCIENCES -> JOURNAL OF ENVIRONMENTAL SCIENCE INTERNATIONAL KCI등재
      2011-05-16 학술지명변경 외국어명 : 미등록 -> JOURNAL OF THE ENVIRONMENTAL SCIENCES KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-03-22 학술지명변경 외국어명 : 미등록 -> journal of the environmental sciences KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2001-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.36 0.35 0.525 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼