RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS SCIE

      Electrochemical surface oxidation of carbon nanofibers

      한글로보기

      https://www.riss.kr/link?id=A107625513

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Graphical abstract</B></P><P><ce:figure id='f0045'></ce:figure></P><P><B>Research highlights</B></P><P>► Carbon nanofiber surfaces were functionalized with oxy...

      <P><B>Graphical abstract</B></P><P><ce:figure id='f0045'></ce:figure></P><P><B>Research highlights</B></P><P>► Carbon nanofiber surfaces were functionalized with oxygen-bearing groups through binderless electrochemical oxidation. ► The oxidation of herringbone CNFs was initiated at a relatively low potential at both the anodic and cathodic electrodes, while the O/C atomic ratio remained relatively constant within the range of potentials investigated. ► The relative concentration of carbonyl and hydroxyl groups increased with increasing potential while the amount of carboxylic groups decreased. ► The structure of the CNF was important in determining the O/C atomic ratio, which was especially dependent on the spatial arrangement of graphene layers.</P> <P><B>Abstract</B></P><P>Carbon nanofiber (CNF) surfaces were functionalized with oxygen-bearing groups through electrochemical oxidation. The electrode was prepared without a binder, allowing easy separation of the functionalized CNFs for subsequent applications. The relationships between the applied potential and the CNF structure with the resulting O/C atomic ratio and the distribution of oxygen functional groups were investigated. Surface groups were identified and characterized by elemental analyses, X-ray photoelectron spectroscopy, micro-attenuated total reflectance FTIR, and cyclic voltammetry. The oxidation of herringbone CNFs was initiated at a relatively low potential at both the anodic and cathodic electrodes, while the O/C atomic ratio remained relatively constant within the range of potentials investigated. The relative concentration of carbonyl and hydroxyl groups increased with increasing potential while the amount of carboxylic groups decreased. The structure of the CNF was important in determining the O/C atomic ratio, which was especially dependent on the spatial arrangement of graphene layers. Tubular CNFs exhibited low O/C atomic ratios while herringbone CNFs, which have a higher surface area, exhibited the largest ratios. The dispersion of the CNFs in water was much more homogeneous following electrochemical oxidation.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼