Titanium alloys are used in various industries due to their superior mechanical strength and corrosion resistance. However, titanium is classified as a difficult-to-machine material due to its low thermal conductivity that consequently causes poor too...
Titanium alloys are used in various industries due to their superior mechanical strength and corrosion resistance. However, titanium is classified as a difficult-to-machine material due to its low thermal conductivity that consequently causes poor tool life. In this study, cryogenic+MQL milling was performed to improve the machinability of Ti-6Al-4V; a cryogenic coolant and a minimum quantity fluid were sprayed simultaneously. The machinability was analyzed according to the cooling and lubrication conditions, focusing on the cutting force and tool wear. When the minimum quantity fluid was injected using two nozzles during cryogenic machining, the cutting force remained low despite the increase in machining distance due to the effective lubrication. The average cutting force at the long machining distances (82-86 passes) was 14.8% lower than that under the wet condition. The tool wear progressed without chipping, and the flank wear length was 55.5% lower than that of the wet machining because the cryogenic cooling and minimum quantity lubrication reduced the tool temperature, friction, and thermal shock.