In this paper, we propose a design and implementation of big data-based fine dust anomaly detection machine learning system. The proposed is system that classifies the fine dust air quality index through meteorological information composed of fine dus...
In this paper, we propose a design and implementation of big data-based fine dust anomaly detection machine learning system. The proposed is system that classifies the fine dust air quality index through meteorological information composed of fine dust and big data. This system classifies fine dust through the design of an anomaly detection algorithm according to the outliers for each air quality index classification categories based on machine learning. Depth data of the image collected from the camera collects images according to the level of fine dust, and then creates a fine dust visibility mask. And, with a learning-based fingerprinting technique through a mono depth estimation algorithm, the fine dust level is derived by inferring the visibility distance of fine dust collected from the monoscope camera. For experimentation and analysis of this method, after creating learning data by matching the fine dust level data and CCTV image data by region and time, a model is created and tested in a real environment.