RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Rational Design of Core‐Shell ZnTe@N‐Doped Carbon Nanowires for High Gravimetric and Volumetric Alkali Metal Ion Storage

      한글로보기

      https://www.riss.kr/link?id=O111562401

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Among the various semiconductor materials, zinc telluride possesses the lowest electron affinity and ultrafast charge separation capability, facilitating improved charge transfer kinetics. In addition, ZnTe has a relatively high density, contributing ...

      Among the various semiconductor materials, zinc telluride possesses the lowest electron affinity and ultrafast charge separation capability, facilitating improved charge transfer kinetics. In addition, ZnTe has a relatively high density, contributing to high volumetric capacity. Here, 1D N‐doped carbon‐coated ZnTe core‐shell nanowires (ZnTe@C) are designed and prepared via a facile ion‐exchange and carbonization technique. When evaluated as anode for metal ion batteries, it demonstrates superior electrochemical performance in both Li and Na ion storage, including high gravimetric and volumetric capacities (1119 mA h g−1 and 906 mA h cm−3, respectively, at 100 mA g−1 for Li ion storage), excellent high‐rate capability, and long‐term cycling stability. This remarkable electrochemical performance is attributed to the low electron affinity and high density of ZnTe, and the amorphous nature of the N‐doped carbon layer in the heterostructured ZnTe@C nanowires, which not only provide fast charge transfer paths, but also effectively maintain the structural and electrical integrity of the ZnTe. The strategy of embedding high density and high‐performance active materials in highly conductive nanostructures represents an effective way of achieving electrode materials with excellent gravimetric and volumetric capacities towards superior energy storage systems.
      This paper reports a strategy of embedding high density and high‐performance active materials in highly conductive nanostructures to achieve electrode materials with excellent gravimetric and volumetric capacities towards superior energy storage systems.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기