RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Statistical and thermal physics

      한글로보기

      https://www.riss.kr/link?id=M7793611

      • 저자
      • 발행사항

        Malabar, Fla. : R.E. Krieger, 1986

      • 발행연도

        1986

      • 작성언어

        영어

      • 주제어
      • DDC

        530.1/3 판사항(19)

      • ISBN

        0898746892 (pbk. : v. 1)
        0898748666 (pbk. : v. 2)

      • 자료형태

        일반단행본

      • 발행국(도시)

        Florida

      • 서명/저자사항

        Statistical and thermal physics / by Shigeji Fujita.

      • 판사항

        Original ed

      • 형태사항

        2 v. : ill. ; 28 cm.

      • 일반주기명

        Includes bibliographies and indexes.
        pt. 1. Probabilities and statistics, thermodynamics, and classical statistical mechanics -- pt. 2. Quantum statistical mechanics and simple applications.

      • 소장기관
        • 계명대학교 동산도서관 소장기관정보
        • 고려대학교 과학도서관 소장기관정보 Deep Link
        • 고려대학교 세종학술정보원 소장기관정보 Deep Link
        • 국립중앙도서관 국립중앙도서관 우편복사 서비스
        • 국민대학교 성곡도서관 소장기관정보
        • 단국대학교 퇴계기념도서관(중앙도서관) 소장기관정보
        • 동서대학교 민석도서관 소장기관정보
        • 성균관대학교 삼성학술정보관 소장기관정보 Deep Link
        • 세명대학교 민송도서관 소장기관정보
        • 아주대학교 도서관 소장기관정보
        • 울산대학교 도서관 소장기관정보
        • 제주대학교 중앙도서관 소장기관정보
        • 한국과학기술원(KAIST) 학술문화관 소장기관정보
        • 한국외국어대학교 글로벌캠퍼스 도서관 소장기관정보
        • 한국외국어대학교 서울캠퍼스 도서관 소장기관정보
        • 호서대학교 중앙도서관 소장기관정보
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      목차 (Table of Contents)

      • [Volume. 1]----------
      • CONTENTS
      • Contents of volume 2 = ⅹ
      • Preface = xv
      • Chapter 1. INTRODUCTION
      • [Volume. 1]----------
      • CONTENTS
      • Contents of volume 2 = ⅹ
      • Preface = xv
      • Chapter 1. INTRODUCTION
      • 1.1 Atoms and Molecules = 2
      • 1.2 Classical Mechanics = 3
      • 1.3 Quantum Mechanics = 3
      • 1.4 Macroscopic Properties. Thermodynamics = 4
      • 1.5 Pressure. Kinetic Theory = 5
      • 1.6 Equilibrium and Non-equilibrium = 7
      • References = 8
      • Chapter 2. PROBABILITIES AND STATISTICS. CORRELATED WALKS.
      • 2.1 Probabilities = 10
      • 2.2 Binomial Distribution = 13
      • 2.3 Average and Root-Mean-Square Deviation. Random Walks = 18
      • 2.4 Probability Density. Maxwell Velocity Distribution Function 1 = 23
      • 2.5 Even and Odd Functions. Maxwell Velocity Distribution Function 2 = 29
      • 2.6 Vacancy Diffusion. Correlated walks = 39
      • 2.7 Solutions of Correlated Walks in One Dimension = 47
      • 2.8 Correlated walks in Three Dimensions = 57
      • References = 59
      • Review Questions = 60
      • General Problems = 61
      • Chapter 3. LIOUVILLE'S THEOREM. FLUID DYNAMICS. NORMAL MODES OF OSCILLATION.
      • 3.1 Newtonian, Lagrangian and Hamiltonian Descriptions of Linear Motion. = 64
      • 3.2 State of Motion. Its Representation in Phase Space Reversible Motion = 73
      • 3.3 Liouville's Theorem = 81
      • 3.4 Hamiltonian Mechanics for a System of Many Particles = 87
      • 3.5 Canonical Transformation = 94
      • 3.6 Poisson Brackets = 100
      • 3.7 Fluid Dynamics. Basic Evolution Equations = 107
      • 3.8 Fluid Dynamics and Statistical Mechanics = 115
      • 3.9 Oscillations of Particles on a String. Normal Modes = 120
      • 3.10 Normal Coordinates = 128
      • 3.11 Transverse Oscillations of a Stretched String = 133
      • 3.12 Normal Coordinates for a String = 142
      • 3.13 Velocity-Dependent Potential Generating the Lorentz Force = 153
      • References = 161
      • Review Questions = 162
      • General Problems = 163
      • Chapter 4. DISTRIBUTION FUNCTIONS. LIOUVILLE AND BOLTZMANN EQUATIONS
      • 4.1 Irreversible Processes. Viscous Flow. Diffusion = 167
      • 4.2 The Particle-Number Density. Microscopic Density = 174
      • 4.3 Probability Distribution Function. The Liouville Equation = 184
      • 4.4 The Gibbs Ensemble. The Liouville'Equation in the Γ-space = 192
      • 4.5 More about the Liouville Equation = 197
      • 4.6 The Many-Particle Distribution Function in the μ-Space. The Indistinguishability Factor = 200
      • 4.7 Reduced Distribution Functions in the μ-Space = 211
      • 4.8 Reduced Distribution Functions and Macroscopic Properties = 220
      • 4.9 Evolution Equations for the Distribution Function f = 229
      • 4.10 Rate of Collision. Mean Free Path = 235
      • 4.11 Two Body Problem. Binary Collision = 240
      • 4.12 The Boltzmann Equation = 253
      • 4.13 Symmetries of Hamiltonians and Stationary States = 262
      • 4.14 The Maxwell-Boltzmann Distribution Function = 269
      • 4.15 Effusion. Experimental Check of the Velocity Distribution = 273
      • 4.16 The H-theorem of Boltzmann = 281
      • 4.17 Transport Coefficients = 285
      • References = 288
      • Review Questions = 290
      • General Problems = 291
      • Chapter 5 EQUATION OF STATE. FIRST AND SECOND LAWS OF THERMODYNAMICS
      • 5.1 Equation of Thermodynamic State = 294
      • 5.2 Ideal Gas. The absolute Temperature T = 295
      • 5.3 Work. Quasi-static Processes. P-V Diagram = 297
      • 5.4 Heat. Heat Capacities = 302
      • 5.5 The First Law of Thermodynamics = 304
      • 5.6 The First Law Applied to a Fluid = 306
      • 5.7 Joule's Experment on the Free Expansion of a Gas = 309
      • 5.8 Adiabatic Change of State = 313
      • 5.9 The Second Law of Thermodynamics = 316
      • 5.10 The Carnot Cycle = 318
      • 5.11 Carnot's Theorem = 322
      • 5.12 Heat Engines. Refrigerating Machines = 327
      • 5.13 Vapor(Gas)-Liquid Transition. Critical State = 328
      • 5.14 The Van der Waals Equation of State = 331
      • References = 337
      • Review Questions = 338
      • General Problems = 339
      • Chapter 6. ENTROPY. THERMODYNAMIC RELATIONS. APPLICATIONS
      • 6.1 Clausius' Theorem = 342
      • 6.2 The Entropy = 351
      • 6.3 Some important Properties of the Entropy = 356
      • 6.4 The perfect Differential = 361
      • 6.5 Entropy of a Gas = 364
      • 6.6 The Equation of Clausius and Clapeyron = 368
      • 6.7 The Helmholtz Free Energy = 371
      • 6.8 The Gibbs Free Energy = 375
      • 6.9 Maxwell Relations = 379
      • 6.10 Heat Capacities = 386
      • 6.11 Sound Waves = 392
      • References = 397
      • Review Questions = 398
      • General Problems = 399
      • Chapter 7. CLASSICAL STATISTICAL MECHANICS. BASIC PRINCIPLES. SIMPLE APPLICATIONS
      • 7.1 Fundamental Theorem. Canonical Ensemble = 402
      • 7.2 More about the Canonical Ensemble. Approach to Stationary States = 406
      • 7.3 Partition Function and Thermodynamic Quantities = 414
      • 7.4 Classical Free Particles and an Ideal Gas = 420
      • 7.5 Equipartition Theorem = 424
      • 7.6 Heat Capacities of Simple Systems = 428
      • 7.7 Fluctuation of Energy = 432
      • 7.8 Bulk Limit = 434
      • 7.9 The Entropy of Mixing = 440
      • 7.10 The Gibbs Paradox = 446
      • 7.11 Grand Canonical Ensemble = 448
      • 7.12 Grand Partition Function and Thermodynamic Quantities = 455
      • References = 460
      • Review Questions = 461
      • General Problems = 462
      • APPENDICES
      • A. Integrals Involving Exponential and Gaussian Functions = 465
      • B. Arrival Probabilities in Correlated Walks = 467
      • C. Vectors 472
      • D. Tensors 490
      • E. The Representation-Independence of Poisson's Brackets = 497
      • F. Derivation of the B-B-G-K-Y Hierarchy Equation = 502
      • USEFUL PHYSICAL CONSTANTS = 505
      • MATHEMATICAL SIGNS AND SYMBOLS = 506
      • LIST OF SYMBOLS = 507
      • INDEX = 512
      • [Volume. 2]----------
      • CONTENTS
      • Contents of volume 1
      • Second Preface
      • Chapter 8. QUANTUM MECHANICS. FUNDAMENTALS REVIEWED
      • 8.1 Basic Experimental Facts = 2
      • 8.2 Generalized Vectors. Matrices = 7
      • 8.3 Linear Operators = 15
      • 8.4 The Eigenvalue Problem = 21
      • 8.5 Orthogonal Representation = 26
      • 8.6 Quantum Mechanical Despription of Linear Motion = 33
      • 8.7 The Momentum Eigenvalue Problem = 41
      • 8.8 The Energy Eigenvalue Problem = 47
      • 8.9 Simple Harmonic Oscillator = 51
      • 8.10 Heisenberg's Uncertainty Principle = 58
      • 8.11 Particle Moving in Three-dimensional Space = 63
      • 8.12 Free Particle in Space = 69
      • 8.13 Five Fundamental Postulates in Quantum Mechanics = 75
      • 8.14 The Heisenberg Picture = 81
      • 8.15 Correspondence between Quantum and Classical Mechanics = 87
      • 8.16 The Gibbs Ensemble in Quantum Mechanics = 91
      • References = 99
      • Review Questions = 100
      • General Problems = 101
      • Chapter 9. QUANTUM STATISTICAL MECHANICS. BASIC PRINCIPLES
      • 9.1 Permutation Group = 105
      • 9.2 Odd and Even Permutations = 107
      • 9.3 Indistinguishable Classical Particles = 115
      • 9.4 Quantum Statistical Postulate. Symmetric States for Bosons = 120
      • 9.5 Antisymmetric States for Fermions. Pauli's Exclusion Principle = 123
      • 9.6 More about Bosons and Fermions. Quantum Statistics and spin = 127
      • 9.7 The Occupation Number Representation = 130
      • 9.8 The Gibbs Ensemble of Many-Particle Systems The Caninical Ensemble = 134
      • 9.9 The Partition Function = 138
      • 9.10 The Grand Canonical Ensemble = 143
      • 9.11 The Bose and Fermi Distribution Functions = 149
      • 9.12 Quantum Statistics in the Classical Limit = 153
      • 9.13 Applicability of Classical Statistical Mechanics = 163
      • References = 167
      • Review Questions = 168
      • General Problems = 169
      • Chapter 10. CONDUCTION ELECTRONS AND LIQUID HELIUM
      • 10.1 Conduction Electrons in a Metal = 172
      • 10.2 Free electrons. Fermi Energy = 177
      • 10.3 The Density of State in Momentum Space = 184
      • 10.4 The Density of States in Energy = 189
      • 10.5 The Heat Capacity of Degenerate Electrons. Qualitative Discussions = 193
      • 10.6 The Heat Capacity of Degenerate Electrons. Quantitative Calculations = 197
      • 10.7 Liquid Helium = 204
      • 10.8 Free Bosons. The Bose-Einstein Condensation = 206
      • 10.9 Bosons in Condensed Phase = 211
      • References = 220
      • Review Questions = 220
      • General Problems = 221
      • Chapter 11. BLACK BODY RADIATION. LATTICE VIBRATIONS
      • 11.1 Electric and Magnetic Fields in a Vacuum. The Wave Equation and its Plane-Wave Solution = 224
      • 11.2 The Electromagnetic Field Energy. Canonical Transformation = 231
      • 11.3 Black Body Radiation. Planck Distribution Function = 238
      • 11.4 Experimental Verification of the Planck Distribution Function = 242
      • 11.5 Radiation Pressure = 248
      • 11.6 Crystal Lattices = 252
      • 11.7 Lattice Vibrations. Einstein's Theory of the Heat Capacity = 255
      • 11.8 Elastic Properties = 260
      • 11.9 Elastic Waves = 264
      • 11.10 The Hamiltonian for Elastic Waves = 269
      • 11.11 Debye's Theory of the Heat Capacity = 277
      • 11.12 More about the Heat Capacity. Lattice Dynamics = 290
      • References = 299
      • Review Questions = 300
      • General Problems = 301
      • Chapter 12. SPIN AND MAGNETISM. PHASE TRANSITIONS. POLYMER CONFORMATION
      • 12.1 Angular Momentum in Quantum Mechanics = 304
      • 12.2 Properties of Angular Momentum = 308
      • 12.3 The Spin Angular Momentum = 314
      • 12.4 The Spin of the Electron = 317
      • 12.5 The Magnetogyric Ratio = 321
      • 12.6 Paramagnetism of Isolated Atoms. Curie's Law = 328
      • 12.7 Pauli Paramagnetism.(Paramagnetism of degenerate Electrons) = 335
      • 12.8 Ferromagnetism. Internal Field Model(Weiss) = 339
      • 12.9 The Ising Model. Solution of the One-Dimensional Model = 349
      • 12.10 Braggs-Williams Approximation = 359
      • 12.11 More about the Ising Model = 366
      • 12.12 Conformation of Polymers in Dilute Solution = 379
      • 12.13 Helix-Coil Transition of Polypeptides in Solution = 385
      • References = 399
      • Review Questions = 401
      • General Problems = 402
      • Chapter 13. TRANSPORT PHENOMENA
      • 13.1 Ohm's Law. The Electrical Conductivity. Matthiessen's Rule = 405
      • 13.2 The Boltzmann Equation for an Electron-Impurity System = 409
      • 13.3 The Current Relaxation Rate. = 413
      • 13.4 Applications to Semiconductors = 420
      • 13.5 The Motion of a Charged Particle in an Electromagnetic Field = 429
      • 13.6 Generalized Ohm's Law. Absorption Power = 437
      • 13.7 Kubo's Formula for the Electrical Conductivity = 444
      • 13.8 More about Kubo's Formula = 451
      • 13.9 The Dynamic Condictivity of Free Electrons = 455
      • 13.10 More about the Mobility. Quasi-Particle Effect = 462
      • 13.11 The Cyclotron Resonance = 471
      • 13.12 The Diffusion = 479
      • 13.13 Simulation of the Lorentz Gas = 483
      • 13.14 Atomic Diffusion in Metals with Impurities = 493
      • References = 501
      • Review Questions = 503
      • General Problems = 504
      • BIBLIOGRAPHY = 506
      • USEFUL PHYSICAL CONSTANT = 512
      • LIST OF SYMBOLS = 513
      • INDEX = 516
      더보기

      온라인 도서 정보

      온라인 서점 구매

      온라인 서점 구매 정보
      서점명 서명 판매현황 종이책 전자책 구매링크
      정가 판매가(할인율) 포인트(포인트몰)
      예스24.com

      Statistical and Thermal Physics, Part I

      판매중 106,370원 95,730원 (10%)

      종이책 구매

      4,790포인트 (5%)
      • 포인트 적립은 해당 온라인 서점 회원인 경우만 해당됩니다.
      • 상기 할인율 및 적립포인트는 온라인 서점에서 제공하는 정보와 일치하지 않을 수 있습니다.
      • RISS 서비스에서는 해당 온라인 서점에서 구매한 상품에 대하여 보증하거나 별도의 책임을 지지 않습니다.

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼