RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Research on the Fault Diagnosis Method of Automotive Charging Pile Based on the Improved MLP with SAE

      한글로보기

      https://www.riss.kr/link?id=A109590197

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In order to improve the situation that the fault data set of electric vehicle charging pile has unbalanced data distribution under each fault and the small amount of data leads to the inconspicuous data features, this paper proposes a method of SAE-MLP model for fault diagnosis of charging pile fault data. This paper frstly utilizes AE to realize the augmentation of the original data, which solves the problem of inconspicuous features, and utilizes the MLP neural network which is good at handling small sample data to classify the faults on the AE processed data. Combining the features of both SAE and MLP two models can efectively improve the accuracy of fault diagnosis of the data in this paper compared with the previous methods of small sample data processing, and minimizes computational costs.
      번역하기

      In order to improve the situation that the fault data set of electric vehicle charging pile has unbalanced data distribution under each fault and the small amount of data leads to the inconspicuous data features, this paper proposes a method of SAE-ML...

      In order to improve the situation that the fault data set of electric vehicle charging pile has unbalanced data distribution under each fault and the small amount of data leads to the inconspicuous data features, this paper proposes a method of SAE-MLP model for fault diagnosis of charging pile fault data. This paper frstly utilizes AE to realize the augmentation of the original data, which solves the problem of inconspicuous features, and utilizes the MLP neural network which is good at handling small sample data to classify the faults on the AE processed data. Combining the features of both SAE and MLP two models can efectively improve the accuracy of fault diagnosis of the data in this paper compared with the previous methods of small sample data processing, and minimizes computational costs.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼