RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCI SCIE SCOPUS

      Basis Translation Matrix between Two Isomorphic Extension Fields via Optimal Normal Basis

      한글로보기

      https://www.riss.kr/link?id=A103381247

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a method for generating a basis translation matrix between isomorphic extension fields. To generate a basis translation matrix, we need the equality correspondence of a basis between the isomorphic extension fields. Consider an ext...

      This paper proposes a method for generating a basis
      translation matrix between isomorphic extension fields. To
      generate a basis translation matrix, we need the equality
      correspondence of a basis between the isomorphic
      extension fields. Consider an extension field Fpm where p is
      characteristic. As a brute force method, when pm is small,
      we can check the equality correspondence by using the
      minimal polynomial of a basis element; however, when pm
      is large, it becomes too difficult. The proposed methods are
      based on the fact that Type I and Type II optimal normal
      bases (ONBs) can be easily identified in each isomorphic
      extension field. The proposed methods efficiently use Type
      I and Type II ONBs and can generate a pair of basis
      translation matrices within 15 ms on Pentium 4 (3.6 GHz)
      when mlog2 p = 160.

      더보기

      참고문헌 (Reference)

      1 A. Lenstra, "The XTR Public Key System" Springer 1-19, 2000

      2 K. Aoki, "Optimization of Prime Field Multiplication Using Redundant Representation" SCIS 3A3-3A5, 2004

      3 D. Bailey, "Optimal Extension Fields for Fast Arithmetic on Public-Key Algorithms" 472-485, 1998

      4 R.M. Avanzi, "Generic Efficient Arithmetic Algorithms for PAFFs (Processor Adequate Finite Fields)" 3006 : 321-334, 2004

      5 R. Lidl, "Finite Fields, Encyclopedia of Mathematics and Its Applications" Cambridge University Press 1984

      6 Y. Nogami, "Finite Extension Field with Modulus of All-One Polynomial and Representation of Its Elements for Fast Arithmetic Operations" E86–A (E86–A): 2376-2387, 2003

      7 H.W. Lenstra Jr, "Finding Isomorphisms between Finite Fields" 56 : 329-347, 1991

      8 Y. Nogami, "Fast Implementation of Extension Fields with Type II ONB and Cyclic Vector Multiplication Algorithm" E88–A (E88–A): 1200-1208, 2005

      9 I. Blake, "Elliptic Curve in Cryptography" Cambridge University Press 1999

      10 C. Paar, "Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields" Univ. of Essen 1994

      1 A. Lenstra, "The XTR Public Key System" Springer 1-19, 2000

      2 K. Aoki, "Optimization of Prime Field Multiplication Using Redundant Representation" SCIS 3A3-3A5, 2004

      3 D. Bailey, "Optimal Extension Fields for Fast Arithmetic on Public-Key Algorithms" 472-485, 1998

      4 R.M. Avanzi, "Generic Efficient Arithmetic Algorithms for PAFFs (Processor Adequate Finite Fields)" 3006 : 321-334, 2004

      5 R. Lidl, "Finite Fields, Encyclopedia of Mathematics and Its Applications" Cambridge University Press 1984

      6 Y. Nogami, "Finite Extension Field with Modulus of All-One Polynomial and Representation of Its Elements for Fast Arithmetic Operations" E86–A (E86–A): 2376-2387, 2003

      7 H.W. Lenstra Jr, "Finding Isomorphisms between Finite Fields" 56 : 329-347, 1991

      8 Y. Nogami, "Fast Implementation of Extension Fields with Type II ONB and Cyclic Vector Multiplication Algorithm" E88–A (E88–A): 1200-1208, 2005

      9 I. Blake, "Elliptic Curve in Cryptography" Cambridge University Press 1999

      10 C. Paar, "Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields" Univ. of Essen 1994

      11 T. Sugimura, "Consideration on Irreducible Cyclotomic Polynomials" J73–A (J73–A): 1929-1935, 1990

      12 A. Menezes, "Applications of Finite Fields" Kluwer Academic Publishers 1993

      13 B. Sunar, "An Efficient Basis Conversion Algorithm for Composite Fields with Given Representations" 54 (54): 992-997, 2005

      14 D.G. Cantor, "A New Algorithm for Factoring Polynomials over Finite Fields" 36 : 587-592, 1981

      15 V. Shoup, "A Library for Doing Number Theory"

      16 T. Itoh, "A Fast Algorithm for Computing Multiplicative Inverses in GF(2m) Using Normal Bases" 78 : 171-177, 1988

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2005-09-27 학술지등록 한글명 : ETRI Journal
      외국어명 : ETRI Journal
      KCI등재
      2003-01-01 평가 SCI 등재 (신규평가) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.78 0.28 0.57
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.47 0.42 0.4 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼