RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Framework of Real-time Car Detection using Calibrated Camera and LRF

      한글로보기

      https://www.riss.kr/link?id=A101196375

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper proposes a framework for a real-time car detection method using calibrated system of camera and Laser Range Finder (LRF). Car candidates are extracted from the LRF data using a gridding method. The points sensed by LRF are grouped into 2D g...

      This paper proposes a framework for a real-time car detection method using calibrated system of camera and Laser Range Finder (LRF). Car candidates are extracted from the LRF data using a gridding method. The points sensed by LRF are grouped into 2D grid. Two adjacent occupied grid elements are marked with same label, forming an object. The objects formed by the labeling method are filtered out based on their size. A region of interest (ROI) in camera image is generated for each object located in 2D grid using the property of the calibrated camera and LRF system. From each ROI, Histogram of oriented gradient (HOG) features are extracted. In order to achieve a faster computation time, the dimension of the HOG feature is reduced using genetic algorithm approach, with a machine learning approach as the validation method. Experiments result shows that the proposed framework achieves around 68 fps of processing speed.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. INTRODUCTION
      • 2. RELATEDWORKS
      • 3. PROPOSED METHOD
      • 4. EXPERIMENTS
      • Abstract
      • 1. INTRODUCTION
      • 2. RELATEDWORKS
      • 3. PROPOSED METHOD
      • 4. EXPERIMENTS
      • 5. CONCLUSION
      • REFERENCES
      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼