RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Tuning physical properties and BMP-2 release rates of injectable hydrogel systems for an optimal bone regeneration effect

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>For a substance to be used as a drug delivery carrier and tissue inducible material for a target disease, its drug release rate and physical properties should be optimized to facilitate the healing process. We developed multi-tunable hydrogel systems with various physical properties and release behaviors to determine the optimal conditions for bone regeneration. Five injectable poly(phosphazene) hydrogels were developed with different types and amounts of anionic side-chains. The five polymer hydrogels showed considerably different <I>in vitro</I> and <I>in vivo</I> performances for sol-gel phase transition, dissolution/degradation, water uptake, and pore size. Furthermore, bone morphogenetic protein-2 (BMP-2) was loaded into the polymer hydrogels by forming nano-sized ionic-complexes with each polymer. The five types of nanocomplex hydrogels showed completely different BMP-2 release rates. By administering each nanocomplex hydrogel to mouse calvarial, we identified the most adapted nanocomplex hydrogel system for effective bone regeneration. The BMP-2 release rate was the most important factor in effective bone regeneration. Finally, the bone regeneration effect of the optimized hydrogel system was investigated in a critical-sized calvarial defect model.</P>
      번역하기

      <P><B>Abstract</B></P> <P>For a substance to be used as a drug delivery carrier and tissue inducible material for a target disease, its drug release rate and physical properties should be optimized to facilitate the heal...

      <P><B>Abstract</B></P> <P>For a substance to be used as a drug delivery carrier and tissue inducible material for a target disease, its drug release rate and physical properties should be optimized to facilitate the healing process. We developed multi-tunable hydrogel systems with various physical properties and release behaviors to determine the optimal conditions for bone regeneration. Five injectable poly(phosphazene) hydrogels were developed with different types and amounts of anionic side-chains. The five polymer hydrogels showed considerably different <I>in vitro</I> and <I>in vivo</I> performances for sol-gel phase transition, dissolution/degradation, water uptake, and pore size. Furthermore, bone morphogenetic protein-2 (BMP-2) was loaded into the polymer hydrogels by forming nano-sized ionic-complexes with each polymer. The five types of nanocomplex hydrogels showed completely different BMP-2 release rates. By administering each nanocomplex hydrogel to mouse calvarial, we identified the most adapted nanocomplex hydrogel system for effective bone regeneration. The BMP-2 release rate was the most important factor in effective bone regeneration. Finally, the bone regeneration effect of the optimized hydrogel system was investigated in a critical-sized calvarial defect model.</P>

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼