RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Spatial distribution and trends of different precipitation variability indices based on daily data in Northern Chile between 1966 and 2015

      한글로보기

      https://www.riss.kr/link?id=O119695587

      • 저자
      • 발행기관
      • 학술지명
      • 권호사항
      • 발행연도

        2019년

      • 작성언어

        -

      • Print ISSN

        0899-8418

      • Online ISSN

        1097-0088

      • 등재정보

        SCI;SCIE;SCOPUS

      • 자료형태

        학술저널

      • 수록면

        4595-4610   [※수록면이 p5 이하이면, Review, Columns, Editor's Note, Abstract 등일 경우가 있습니다.]

      • 구독기관
        • 전북대학교 중앙도서관  
        • 성균관대학교 중앙학술정보관  
        • 부산대학교 중앙도서관  
        • 전남대학교 중앙도서관  
        • 제주대학교 중앙도서관  
        • 중앙대학교 서울캠퍼스 중앙도서관  
        • 인천대학교 학산도서관  
        • 숙명여자대학교 중앙도서관  
        • 서강대학교 로욜라중앙도서관  
        • 계명대학교 동산도서관  
        • 충남대학교 중앙도서관  
        • 한양대학교 백남학술정보관  
        • 이화여자대학교 중앙도서관  
        • 고려대학교 도서관  
      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Northern Chile is one of the most arid regions in the world, as it includes the Atacama Desert. At high elevations, most precipitation is observed only during a short period of the year, from December until March. This renders water availability a major concern for policymakers. Accumulated rainfall varies considerably from one year to another, and for this reason, climate projections have a very low degree of confidence in this area. Consequently, in this region, it is more interesting to study the irregularity of precipitation itself than accumulated rainfall values, as they express in a clearer way the behaviour of precipitation. According to daily data from 161 meteorological stations, four irregularity indices of precipitation were calculated: concentration index, entropy, persistence index, and fractal dimension. These indices were measured according to observed values, and their spatial distribution was subsequently determined by interpolating following multivariate regression models that consider different geographical variables such as latitude, distance to the Amazon Basin, elevation, orientation, and curvature. The temporal trends of each index and for each meteorological station were also calculated, displaying different results depending on the latitude and elevation. These changes agree with the observed modifications on the inter‐tropical atmospheric circulation and with changes in the precipitation diurnal cycle. These results will help improve climate projections for this region, in the process facilitating the development of more accurate climate models and informing the formulation of water management policies.
      Water in Northern Chile, mainly characterized by the Atacama Desert, is a very scarce resource, and precipitations are the principal providing source of it. Under very challenging climate change scenarios, to study, not only the amount evolutions but also the irregularity of rainfall is of high interest, so models can be improved. Climate projections can be more confident, so policymakers can develop more appropriate politics and can take more accurate decisions to manage water in this area.
      번역하기

      Northern Chile is one of the most arid regions in the world, as it includes the Atacama Desert. At high elevations, most precipitation is observed only during a short period of the year, from December until March. This renders water availability a maj...

      Northern Chile is one of the most arid regions in the world, as it includes the Atacama Desert. At high elevations, most precipitation is observed only during a short period of the year, from December until March. This renders water availability a major concern for policymakers. Accumulated rainfall varies considerably from one year to another, and for this reason, climate projections have a very low degree of confidence in this area. Consequently, in this region, it is more interesting to study the irregularity of precipitation itself than accumulated rainfall values, as they express in a clearer way the behaviour of precipitation. According to daily data from 161 meteorological stations, four irregularity indices of precipitation were calculated: concentration index, entropy, persistence index, and fractal dimension. These indices were measured according to observed values, and their spatial distribution was subsequently determined by interpolating following multivariate regression models that consider different geographical variables such as latitude, distance to the Amazon Basin, elevation, orientation, and curvature. The temporal trends of each index and for each meteorological station were also calculated, displaying different results depending on the latitude and elevation. These changes agree with the observed modifications on the inter‐tropical atmospheric circulation and with changes in the precipitation diurnal cycle. These results will help improve climate projections for this region, in the process facilitating the development of more accurate climate models and informing the formulation of water management policies.
      Water in Northern Chile, mainly characterized by the Atacama Desert, is a very scarce resource, and precipitations are the principal providing source of it. Under very challenging climate change scenarios, to study, not only the amount evolutions but also the irregularity of rainfall is of high interest, so models can be improved. Climate projections can be more confident, so policymakers can develop more appropriate politics and can take more accurate decisions to manage water in this area.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼