RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      "ATT-NestedUnet : Sugar Beet and Weed Detection using Semantic Segmentation"

      한글로보기

      https://www.riss.kr/link?id=A109007641

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Sugar beet is a biennial herb with cold, drought, and salinity resistance and is one of the world's major sugar crops. In addition to sugar, sugar beets are important raw materials for chemical and pharmaceutical products, and the residue after sugar ...

      Sugar beet is a biennial herb with cold, drought, and salinity resistance and is one of the world's major sugar crops. In addition to sugar, sugar beets are important raw materials for chemical and pharmaceutical products, and the residue after sugar extraction can be used to produce agricultural by-products, such as compound feed, which has a high comprehensive utilization value [1]. Field weeds, such as sugar beets, are harmful to crop growth and can compete with crops for sunlight and nutrients. If weeds are not removed in time during crop growth, they cause a decrease in crop yield and quality. Therefore, there is considerable interest in the development of automated machinery for selective weeding operations. The core component of this technology is a vision system that distinguishes between crops and weeds. To address the problems of difficult weed extraction, poor detection, and segmentation of region boundaries in traditional sugar beet detection, an end-to-end encoder–decoder model based on an improved UNet++ for segmentation is proposed in this paper and applied to sugar beet and weed detection. UNet++ can better fuse feature maps from different layers by skipping connections and can effectively preserve the details of sugar beet and weed images. The new model adds an attention mechanism to UNet++ by embedding the attention module into the upsampling process of UNet++ to suppress interference from extraneous noise. The improved model was evaluated on a sugar beet and weed dataset containing 1026 images. The image dataset in this study was obtained from sugar beet and weed images collected at the University of Bonn, Germany. According to the experimental results, the model can significantly eliminate noise and improve segmentation accuracy

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼