RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      First-principles calculations of electronic and optical properties of Fe1-xZnxS2 and Zn1-xMgxO alloys

      한글로보기

      https://www.riss.kr/link?id=A105063858

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Electronic properties of Fe1xZnxS2 and Zn1xMgxO alloys are performed by using full potential linearized augmented plane wave method (FP-LAPW). Band gap energies have been calculated by using concomitantly LDA with Tran Blaha modified Becke-Johnson (TB...

      Electronic properties of Fe1xZnxS2 and Zn1xMgxO alloys are performed by using full potential linearized augmented plane wave method (FP-LAPW). Band gap energies have been calculated by using concomitantly LDA with Tran Blaha modified Becke-Johnson (TB-mBJ) potentials. The corrected positions related to valence band maximum (VBM) and conduction band minimum (CBM) have been evaluated by manybody perturbation theory in GW approximation. The electron affinities of these alloys are determined by knowledge the exact position of CBM from the fit of total density of states (TDOS). In the case of 0 at % of (Zn, Mg) alloyed elements, pyrite FeS2 and wurtzite ZnO, respectively, exhibit positive electron affinities of 3.34 eV and 4.34 eV, which are in close with experimental measurements. As for optical properties, the absorption coefficient spectra and refraction index variations are performed from momentum matrix elements and interpreted via the projected density of states. The studied alloys show significant responses in visible range and a blue shift in connection with increasing the alloyed elements.

      더보기

      참고문헌 (Reference)

      1 B. Mao, 1 : 12060-, 2013

      2 K. J. Rietwyk, "Work function and electron affinity of the fluorine-terminated (100) diamond surface" 102 : 091604-091608, 2013

      3 Ralf Stowasser, "What do the Kohn Sham orbitals and eigenvalues mean?" 121 (121): 3414-3420, 1999

      4 P. Blaha, "WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties" Techn. Universitat Wien 2001

      5 W. Yang, "Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films" 78 : 2787-2789, 2001

      6 Brian Kolb, "Ultrafast band-gap oscillations in iron pyrite" 88 : 235208-235212, 2013

      7 D.R. Hartree, "The wave mechanics of an atom with a non-Coulomb central field, I, II, III" 24 : 89-132, 1928

      8 G. L. Gutsev, "The theoretical investigation of the electron affinity of chemical compounds" 61 : 169-221, 1985

      9 Yi Ke, "The origin of electrical property deterioration with increasing Mg concentration in ZnMgO:Ga" 520 (520): 3697-3702, 2012

      10 T. S. Moss, "The interpretation of the properties of indium antimonide" 67 : 775-782, 1954

      1 B. Mao, 1 : 12060-, 2013

      2 K. J. Rietwyk, "Work function and electron affinity of the fluorine-terminated (100) diamond surface" 102 : 091604-091608, 2013

      3 Ralf Stowasser, "What do the Kohn Sham orbitals and eigenvalues mean?" 121 (121): 3414-3420, 1999

      4 P. Blaha, "WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties" Techn. Universitat Wien 2001

      5 W. Yang, "Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films" 78 : 2787-2789, 2001

      6 Brian Kolb, "Ultrafast band-gap oscillations in iron pyrite" 88 : 235208-235212, 2013

      7 D.R. Hartree, "The wave mechanics of an atom with a non-Coulomb central field, I, II, III" 24 : 89-132, 1928

      8 G. L. Gutsev, "The theoretical investigation of the electron affinity of chemical compounds" 61 : 169-221, 1985

      9 Yi Ke, "The origin of electrical property deterioration with increasing Mg concentration in ZnMgO:Ga" 520 (520): 3697-3702, 2012

      10 T. S. Moss, "The interpretation of the properties of indium antimonide" 67 : 775-782, 1954

      11 D. M. Miller, "The electron affinity of CF3" 88 : 727-739, 1996

      12 Robert K. Swank, "Surface properties of II-VI compounds" 153 (153): 844-849, 1967

      13 Martin A. Green, "Solar cell efficiency tables (version 49)" 25 (25): 3-13, 2017

      14 W. Paszkowicz, "Rietveld refinement study of pyrite crystals" 401 (401): 289-295, 2005

      15 John P. Perdew, "Restoring the density-gradient expansion for exchange in solids and surfaces" 100 : 136406-136409, 2008

      16 L. A. Agapito, "Reformulation of DFTþU as a pseudohybrid Hubbard density functional for accelerated materials discovery" 5 : 011006-011021, 2015

      17 K.E. Knutsen, "Prediction of high efficiency ZnMgO/Si solar cells suppressing carrier recombination by conduction band engineering" 210 (210): 585-588, 2013

      18 Matthias Ernzerhof, "Perspective on “Inhomogeneous electron gas”" 103 : 259-262, 2000

      19 Laura M. Roth, "New method for linearizing many-body equations of motion in statistical mechanics" 20 (20): 1431-1434, 1968

      20 J. W. Chiou, "Mg-induced increase of band gap in Zn1 xMgxO nanorods revealed by x-ray absorption and emission spectroscopy" 104 : 013709-013712, 2008

      21 H. H. Zhang, "Mg composition dependent band offsets of Zn1-xMgxO/ZnO heterojunctions" 15 : 11231-11235, 2013

      22 A. Ennaoui, "Iron disulfide for solar energy conversion" 29 : 289-370, 1993

      23 H. Jiang, "Ionization potentials of semiconductors from firstprinciples" 139 : 164114-164123, 2013

      24 E. N. Zarkadoula, "Ionization potentials and electron affinities from reduced-density-matrix functional theory" 85 : 032504-032510, 2012

      25 W. Knorr, "Investigating exact density-functional theory of a model semiconductor" 68 (68): 639-641, 1992

      26 P. Hohenberg, "Inhomogeneous electron gas" 136 : 864-871, 1964

      27 P. Xiao, "Increasing the band gap of FeS2 by alloying with Zn and applying biaxial strain: a first-principles study" 629 : 43-48, 2015

      28 Burak Himmetoglu, "Hubbard-corrected DFT energy functionals: the LDAþU description of correlated systems" 114 (114): 14-49, 2014

      29 Loïg Vaugier, "Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation" 86 : 165105-165125, 2012

      30 Serge Desgreniers, "High-density phases of ZnO: Structural and compressive parameters" 58 (58): 14102-14105, 1998

      31 Hong Jiang, "GW with linearized augmented plane waves extended by high-energy local orbitals" 93 : 115203-115213, 2016

      32 Hong Jiang, "Firstprinciples modeling of localized d states with the GW@LDAþU approach" 82 : 045108-045123, 2010

      33 T. Schena, "First-principles studies of FeS2 using manybody perturbation theory in the G0W0 approximation" 88 : 235203-235212, 2013

      34 M. C. Toroker, "First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes" 13 (13): 16644-16654, 2011

      35 R. Sun, "Feasibility of band gap engineering of pyrite FeS2" 84 : 245211-245217, 2011

      36 Hong Jiang, "FHI-gap: a code based on the allelectron augmented plane wave method" 184 (184): 348-366, 2013

      37 V. Brosco, "Exact exchange-correlation potential of an ionic Hubbard model with a free surface" 3 : 2172-, 2013

      38 Mel Levy, "Exact differential equation for the density and ionization energy of a many-particle system" 30 (30): 2745-2748, 1984

      39 Brianna S. Eller, "Electronic surface and dielectric interface states on GaN and AlGaN" 31 : 050807-0508035, 2013

      40 C. L. Dong, "Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation" 70 : 195325-195329, 2004

      41 L. Vadkhiya, "Electronic and optical properties of iron pyrite" 509 (509): 3042-3047, 2011

      42 R.J. Nemanich, "Electron emission properties of crystalline diamond and III-nitride surfaces" 130-132 : 694-703, 1998

      43 J. Hubbard, "Electron correlations in narrow energy bands" 276 : 238-257, 1963

      44 Junjiro Kanamori, "Electron correlation and ferromagnetism of transition metals" 30 (30): 275-289, 1963

      45 Martin C. Gutzwiller, "Effect of correlation on the ferromagnetism of transition metals" 10 (10): 159-162, 1963

      46 Guangmei Zhai, "Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films" 674 : 9-15, 2016

      47 W. Shockley, "Detailed balance limit of efficiency of p-n junction solar cells" 32 : 510-519, 1961

      48 John P. Perdew, "Density-functional theory for fractional particle number: derivative discontinuities of the energy" 49 : 1691-1694, 1982

      49 V. I. Anisimov VI, "Density-functional calculation of effective Coulomb interactions in metals" 43 (43): 7570-7574, 1991

      50 T. Minemoto, "Cu.In,Ga.Se2 solar cells with controlled conduction band offset of window/Cu.In,Ga.Se2 layers" 89 : 8327-8330, 2001

      51 J. B. Krieger, "Construction and application of an accurate local spin-polarized Kohn-Sham potential with integer discontinuity: exchangeonly theory" 45 (45): 101-126, 1992

      52 Hiroyuki Yoshida, "Complete description of ionization energy and electron affinity in organic solids:determining contributions from electronic polarization, energy band dispersion, and molecular orientation" 92 : 075145-075157, 2015

      53 M. C. Kim, "Communication: avoiding unbound anions in density functional calculations" 134 : 171103-171107, 2011

      54 N. Rosch, "Comment on “Concerning the applicability of density functional methods to atomic and molecular negative ions” [J. Chem. Phys. 105, 862 (1996)]" 106 : 8940-8941, 1997

      55 Edward S. Chen, "Classification of organic molecules to obtain electron affinities from half wave reduction potentials: the aromatic hydrocarbons" 110 : 9319-9329, 1999

      56 G. K. H. Madsen, "Charge order in magnetite. An LDAþU study" 69 (69): 777-783, 2005

      57 C. C. Wu, "Characterization of MgxZn1-xO thin films grown on sapphire substrates by metalorganic chemical vapor deposition" 519 : 1966-1970, 2011

      58 Lee A. Cole, "Calculated electron affinities of the elements" 25 : 1265-1271, 1982

      59 Y. Hinuma, "Band alignment of semiconductors from density-functional theory and many-body perturbation theory" 90 : 155405-155420, 2014

      60 J. C. Rienstra-Kiracofe, "Atomic and molecular electron affinities: photoelectron experiments and theoretical computations" 102 (102): 231-282, 2002

      61 Larry A. Curtiss, "Assessment of Gaussian-3 and density functional theories for a larger experimental test set" 112 (112): 7374-7383, 2000

      62 Vladan Stevanovi c, "Assessing capability of semiconductors to split water using ionization potentials and electron affinities only" 16 : 3706-3714, 2014

      63 Elias Burstein, "Anomalous optical absorption limit in InSb" 93 (93): 632-633, 1954

      64 Fabien Tran, "Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential" 102 : 226401-226404, 2009

      65 Axel D. Becke, "A simple effective potential for exchange" 124 : 221101-221104, 2006

      66 Helen R. Eisenberg, "A new generalized KohneSham method for fundamental band-gaps in solids" 11 : 4674-4680, 2009

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼