RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SVM기반의 선택적 주의집중을 이용한 중첩 패턴 인식 = Recognition of Superimposed Patterns with Selective Attention based on SVM

      한글로보기

      https://www.riss.kr/link?id=A105643041

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 신경회로망보다 우수한 성능을 보이는 학습 이론인 SVM을 기반으로, 인간의 인지 과학에서 많은 연구가 이루어지고 있는 선택적 주의집중을 응용한 중첩 패턴 인식 시스템을 ...

      본 논문에서는 신경회로망보다 우수한 성능을 보이는 학습 이론인 SVM을 기반으로, 인간의 인지 과학에서 많은 연구가 이루어지고 있는 선택적 주의집중을 응용한 중첩 패턴 인식 시스템을 제안한다. 제안된 선택적 주의집중 모델은 SVM의 입력단에 주의집중층을 추가하여 SVM의 입력을 직접 변화시키는 학습을 하며 선택적 필터의 기능을 수행한다. 주의집중의 핵심은 학습을 멈추는 적절한 시점을 찾는 것과 그 시점에서 결과를 판단하는 주의집중 척도를 정의하는 것이다. 지지벡터는 주변에 존재하는 패턴들을 대표하는 표본이므로 입력 패턴이 초기상태일 때 주의집중을 하고자 하는 클래스의 가장 가까운 지지벡터를 기준으로 그 지지벡터와의 거리가 최소가 되었을 때 주의집중을 멈추는 것이 적절하다. 일반적인 주의집중을 적용하면 주의집중 척도를 정의하기가 난해해지기 때문에 변형된 입력이 원래 입력의 범위를 넘지 않는다는 제약조건을 추가하여 사용할 수 있는 정보의 폭을 넓히고 새로운 척도를 정의하였다. 이때 사용한 정보는 변형된 입력과 원래 입력의 유클리드 거리, SVM의 출력, 초기상태에 가장 가까웠던 히든뉴런의 출력값이다. 인식 실험을 위해 USPS 숫자 데이터를 사용하여 45개의 조합으로 중첩시켰으며, 주의집중을 적용시켰을 때 단일 SVM보다 인식 성능이 월등히 우수함을 확인하였고, 또한 제한된 주의집중을 사용하였을 때 일반적 주의집중을 이용하는 것 보다 성능이 더 뛰어났음을 확인하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      We propose a recognition system for superimposed patterns based on selective attention model and SVM which produces better performance than artificial neural network. The proposed selective attention model includes attention layer prior to SVM which a...

      We propose a recognition system for superimposed patterns based on selective attention model and SVM which produces better performance than artificial neural network. The proposed selective attention model includes attention layer prior to SVM which affects SVM's input parameters. It also behaves as selective filter. The philosophy behind selective attention model is to find the stopping criteria to stop training and also defines the confidence measure of the selective attention's outcome. Support vector represents the other surrounding sample vectors. The support vector closest to the initial input vector in consideration is chosen. Minimal euclidean distance between the modified input vector based on selective attention and the chosen support vector defines the stopping criteria. It is difficult to define the confidence measure of selective attention if we apply common selective attention model, A new way of doffing the confidence measure can be set under the constraint that each modified input pixel does not cross over the boundary of original input pixel, thus the range of applicable information get increased. This method uses the following information; the Euclidean distance between an input pattern and modified pattern, the output of SVM, the support vector output of hidden neuron that is the closest to the initial input pattern. For the recognition experiment, 45 different combinations of USPS digit data are used. Better recognition performance is seen when selective attention is applied along with SVM than SVM only. Also, the proposed selective attention shows better performance than common selective attention.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼