RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      A Simple and Direct Dead-Time Effect Compensation Scheme in PWM-VSI

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>This paper presents the direct compensation of the switching interval error of the effective voltage vectors by the dead time of a pulsewidth modulation voltage source inverter (PWM-VSI). The output voltages of a three-phase PWM-VSI are distorted and have voltage errors from the dead time to avoid the shoot-through of inverter arms and the time delay of the gate drive. Voltage distortion increases the harmonics of the output voltages and decreases control performance. This paper presents a simple and direct compensation technique to solve this problem in a three-phase VSI. The practical switching output voltages are determined by the dc-link voltage, the switching signals of each phase, the dead time, the time delay, and the current polarities of each phase. For these reasons, output voltage errors are not constant. In order to analyze the dead-time effect in the actual switching voltages of each phase, the practical switching voltages in a sampling period of a space vector PWM (SVPWM) method are calculated according to the current polarity. In the calculation, the dead time, the time delay of devices, and the voltage drops on power devices are included to consider nonlinear voltage distortion. From these practical switching voltages during the switching intervals in a sampling period, the average output voltages of each phase can be derived, and the output voltage errors between the voltage commands and the average output voltages of each phase are obtained. The SVPWM switching intervals of each phase can be derived by the average output voltages that are calculated according to the current polarity and nonlinear voltage distortion to compensate for the output voltage errors. With the simple detection of the current polarity, the practical errors of the switching intervals of each phase can be compensated by the addition of the compensated switching time. Simulation and experimental results validating the proposed compensation method are presented in this paper.</P>
      번역하기

      <P>This paper presents the direct compensation of the switching interval error of the effective voltage vectors by the dead time of a pulsewidth modulation voltage source inverter (PWM-VSI). The output voltages of a three-phase PWM-VSI are disto...

      <P>This paper presents the direct compensation of the switching interval error of the effective voltage vectors by the dead time of a pulsewidth modulation voltage source inverter (PWM-VSI). The output voltages of a three-phase PWM-VSI are distorted and have voltage errors from the dead time to avoid the shoot-through of inverter arms and the time delay of the gate drive. Voltage distortion increases the harmonics of the output voltages and decreases control performance. This paper presents a simple and direct compensation technique to solve this problem in a three-phase VSI. The practical switching output voltages are determined by the dc-link voltage, the switching signals of each phase, the dead time, the time delay, and the current polarities of each phase. For these reasons, output voltage errors are not constant. In order to analyze the dead-time effect in the actual switching voltages of each phase, the practical switching voltages in a sampling period of a space vector PWM (SVPWM) method are calculated according to the current polarity. In the calculation, the dead time, the time delay of devices, and the voltage drops on power devices are included to consider nonlinear voltage distortion. From these practical switching voltages during the switching intervals in a sampling period, the average output voltages of each phase can be derived, and the output voltage errors between the voltage commands and the average output voltages of each phase are obtained. The SVPWM switching intervals of each phase can be derived by the average output voltages that are calculated according to the current polarity and nonlinear voltage distortion to compensate for the output voltage errors. With the simple detection of the current polarity, the practical errors of the switching intervals of each phase can be compensated by the addition of the compensated switching time. Simulation and experimental results validating the proposed compensation method are presented in this paper.</P>

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼