RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      An efficient and facile green synthesis of bisindole methanes as potential Mtb FtsZ inhibitors

      한글로보기

      https://www.riss.kr/link?id=O117879760

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The rising multidrug‐resistant Mycobacterium tuberculosis (Mtb) strain made current anti‐TB drug therapy ineffective and became a major health concern globally; hence it is crucial to develop new molecules against vital targets with a novel mechanism. Mtb Filamenting temperature sensitive protein Z (FtsZ), a tubulin homolog plays a major role in bacterial cell division, in the presence of GTP recruiting essential proteins for cell division and considered to be a potential target for drug discovery. Most of MtbFtsZ inhibitors known are of antibiotics from natural resources and suffer from cellular uptake, specificity. In the present study, we demonstrated for the first time bisindole derivatives as potential MtbFtsZ inhibitors. The synthesis of bisindole derivatives has been carried out using green synthetic approach by applying ammonium molybdate as a catalyst under Ultrasonic condition. Among the synthesized bisindole derivative, I16 and I5 showed 62.29% and 56.86% inhibition of GTPase activity of MtbFtsZ and increased the length of Mycobacterium smegmatis and Bacillus subtilis by two folds. Further compound I16 inhibited Mtb growth with a MIC of 37.5 μg/ml. To explain these interactions, detailed Molecular docking studies have been carried out and found to be supportive to the biological activity.
      In this study, 21 bisindole derivatives were synthesized using green synthetic approach by applying ammonium molybdate as a catalyst under Ultrasonic condition. Two compounds I5 and I16 showed inhibition of GTPase activity of MtbFtsZ and increased the length of Mycobacterium smegmatis and Bacillus subtilis by twofolds upon in‐vitro evaluation. Further compound I16 inhibited Mtb growth with an MIC of 37.5 μg/ml. The experimental data were supported by molecular docking studies.
      번역하기

      The rising multidrug‐resistant Mycobacterium tuberculosis (Mtb) strain made current anti‐TB drug therapy ineffective and became a major health concern globally; hence it is crucial to develop new molecules against vital targets with a novel mechan...

      The rising multidrug‐resistant Mycobacterium tuberculosis (Mtb) strain made current anti‐TB drug therapy ineffective and became a major health concern globally; hence it is crucial to develop new molecules against vital targets with a novel mechanism. Mtb Filamenting temperature sensitive protein Z (FtsZ), a tubulin homolog plays a major role in bacterial cell division, in the presence of GTP recruiting essential proteins for cell division and considered to be a potential target for drug discovery. Most of MtbFtsZ inhibitors known are of antibiotics from natural resources and suffer from cellular uptake, specificity. In the present study, we demonstrated for the first time bisindole derivatives as potential MtbFtsZ inhibitors. The synthesis of bisindole derivatives has been carried out using green synthetic approach by applying ammonium molybdate as a catalyst under Ultrasonic condition. Among the synthesized bisindole derivative, I16 and I5 showed 62.29% and 56.86% inhibition of GTPase activity of MtbFtsZ and increased the length of Mycobacterium smegmatis and Bacillus subtilis by two folds. Further compound I16 inhibited Mtb growth with a MIC of 37.5 μg/ml. To explain these interactions, detailed Molecular docking studies have been carried out and found to be supportive to the biological activity.
      In this study, 21 bisindole derivatives were synthesized using green synthetic approach by applying ammonium molybdate as a catalyst under Ultrasonic condition. Two compounds I5 and I16 showed inhibition of GTPase activity of MtbFtsZ and increased the length of Mycobacterium smegmatis and Bacillus subtilis by twofolds upon in‐vitro evaluation. Further compound I16 inhibited Mtb growth with an MIC of 37.5 μg/ml. The experimental data were supported by molecular docking studies.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼