RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      다기능 재활운동을 위한 힘 센서가 없는 상지 재활 로봇의 힘 제어

      한글로보기

      https://www.riss.kr/link?id=A103617540

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents a force control based on the observer without taking any force or torque measurement from the robot which allows realizing more stable and robust human robot interaction for the developed multi-functional upper limb rehabilitation robot. The robot has four functional training modes which can be classified by the human robot interaction types: passive, active, assistive, and resistive mode. The proposed observer consists of internal disturbance observer and external force observer for distinctive performance evaluation. Since four training modes can be quantitatively identified as impedance variation, position-based impedance control with feedback and feedforward controller was applied to the assistive training mode. The results showed that the proposed sensorless observer estimated cleaner and more accurate force compared to the force sensor and the impedance controller embedded with the proposed observer completed the assistive training mode safely and properly.
      번역하기

      This paper presents a force control based on the observer without taking any force or torque measurement from the robot which allows realizing more stable and robust human robot interaction for the developed multi-functional upper limb rehabilitation ...

      This paper presents a force control based on the observer without taking any force or torque measurement from the robot which allows realizing more stable and robust human robot interaction for the developed multi-functional upper limb rehabilitation robot. The robot has four functional training modes which can be classified by the human robot interaction types: passive, active, assistive, and resistive mode. The proposed observer consists of internal disturbance observer and external force observer for distinctive performance evaluation. Since four training modes can be quantitatively identified as impedance variation, position-based impedance control with feedback and feedforward controller was applied to the assistive training mode. The results showed that the proposed sensorless observer estimated cleaner and more accurate force compared to the force sensor and the impedance controller embedded with the proposed observer completed the assistive training mode safely and properly.

      더보기

      참고문헌 (Reference)

      1 김선민, "더블 베인 회전형 유압 구동시스템의 임피던스 제어를 위한 토크 서보 설계" 한국로봇학회 5 (5): 160-168, 2010

      2 J. C. Perry, "Upper-limb powered exoskeleton design" 12 (12): 408-417, 2007

      3 T. Murakami, "Torque sensorless control in multidegree-of-freedom manipulator" 40 (40): 259-265, 1993

      4 S. Haddadin, "The role of the robot mass and velocity in physical human-robot interaction-Part I : Non-constrained blunt impacts" 1331-1338, 2008

      5 J. An, "Stability and Performance of Haptic Interfaces with Active/Passive Actuators-Theory and Experiments" 25 (25): 1121-1136, 2006

      6 최정현, "Singularity Analysis of a Planar Parallel Mechanism with Revolute Joints Based on a Geometric Approach" 한국정밀공학회 14 (14): 1369-1375, 2013

      7 A. D. Luca, "Sensorless robot collision detection and hybrid force/motion control. In : Robotics and Automation" 999-1004, 2005

      8 C. G. Burgar, "Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke : Department of Veterans Affairs multisite clinical trial" 48 (48): 445-458, 2011

      9 H. I. Krebs, "Rehabilitation robotics : pilot trial of a spatial extension for MIT-Manus" 1 (1): 1-15, 2004

      10 B. Ugurlu, "Proof of concept for robot-aided upper limb rehabilitation using disturbance observers" 45 (45): 110-118, 2015

      1 김선민, "더블 베인 회전형 유압 구동시스템의 임피던스 제어를 위한 토크 서보 설계" 한국로봇학회 5 (5): 160-168, 2010

      2 J. C. Perry, "Upper-limb powered exoskeleton design" 12 (12): 408-417, 2007

      3 T. Murakami, "Torque sensorless control in multidegree-of-freedom manipulator" 40 (40): 259-265, 1993

      4 S. Haddadin, "The role of the robot mass and velocity in physical human-robot interaction-Part I : Non-constrained blunt impacts" 1331-1338, 2008

      5 J. An, "Stability and Performance of Haptic Interfaces with Active/Passive Actuators-Theory and Experiments" 25 (25): 1121-1136, 2006

      6 최정현, "Singularity Analysis of a Planar Parallel Mechanism with Revolute Joints Based on a Geometric Approach" 한국정밀공학회 14 (14): 1369-1375, 2013

      7 A. D. Luca, "Sensorless robot collision detection and hybrid force/motion control. In : Robotics and Automation" 999-1004, 2005

      8 C. G. Burgar, "Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke : Department of Veterans Affairs multisite clinical trial" 48 (48): 445-458, 2011

      9 H. I. Krebs, "Rehabilitation robotics : pilot trial of a spatial extension for MIT-Manus" 1 (1): 1-15, 2004

      10 B. Ugurlu, "Proof of concept for robot-aided upper limb rehabilitation using disturbance observers" 45 (45): 110-118, 2015

      11 J. An, "One Source Multi-Functional and Multi Use Upper Limb Training Robot" 2015

      12 J. H. Choi, "Kinematic Design Consideration Based on Actuator Placement of Five-bar Planar Robot for Arm Rehabilitation" 625 : 638-643, 2014

      13 N. Hogan, "Impedance Control : An Approach to Manipulation : Part II-Implementation" 107 (107): 8-16, 1985

      14 S. Oh, "Frequency-shaped impedance control for safe human-robot interaction in reference tracking application" 19 (19): 1907-1916, 2014

      15 H. -K. Lee, "Dual-mode capacitive proximity sensor for robot application : Implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes" 9 (9): 1748-1755, 2009

      16 G. Rosati, "Design, implementation and clinical tests of a wire-based robot for neurorehabilitation" 15 (15): 560-569, 2007

      17 P. Nicholas, "Design and control considerations for high-performance series elastic actuators" 19 (19): 1080-1091, 2014

      18 S. Oh, "Design and analysis of force-sensor-less power-assist control" 61 (61): 985-993, 2014

      19 R.J, Sanchez, "Automating arm movement training following severe stroke : functional exercises with quantitative feedback in a gravity-reduced environment" 14 (14): 378-389, 2006

      20 U. Keller, "Assist-as-needed path control for the PASCAL rehabilitation robot" 1-7, 2013

      21 A. Albu-Schäffer, "Anthropomorphic soft robotics-from torque control to variable intrinsic compliance" Springer Berlin Heidelberg 185-207, 2011

      22 N. Vuong, "Active skin as new haptic interface" 7642 : 1-9, 2010

      23 N. Tobias, "ARMin-design of a novel arm rehabilitation robot" 57-60, 2005

      24 T. Teodor, "A unified framework for external wrench estimation, interaction control and collision reflexes for flying robots" 4197-4204, 2014

      25 C. Ott, "A hybrid system framework for unified impedance and admittance control" 78 (78): 359-375, 2015

      26 H. S. Han, "A highly sensitive dual mode tactile and proximity sensor using Carbon Microcoils for robotic applications" 97-102, 2016

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2013-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2012-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2011-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2008-09-30 학회명변경 한글명 : 한국로봇공학회 -> 한국로봇학회
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.59 0.59 0.45
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.38 0.31 0.716 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼