RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Graphene Actively Mode‐Locked Lasers

      한글로보기

      https://www.riss.kr/link?id=O120352322

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Actively mode‐locked lasers offer varying degrees of flexibility for a wider range of applications than their passively modulated counterparts, due to their capability for electrically controlled ultrahigh repetition rate operation. Graphene based electrooptic modulators with unique advantages of broad operation bandwidth and ultrafast speed are suitable for light modulation in various optoelectronic applications. Here, an actively mode‐locked laser with a graphene based electrooptic modulator is reported for the first time. The active mode‐locking technique combined together with the intracavity nonlinear pulse shortening effect allows the generation of transform‐limited 1.44 ps pulses with pulse energy of 844 pJ. The electrically controlled repetition rate of generated pulses, a key performance advantage of active mode‐locking, is also demonstrated. These results provide a practical and effective approach for actively mode‐locked lasers with broad operation bandwidth and compact footprint, which contributes a new way for applications of two‐dimensional (2D) layered materials in ultrafast lasers.
      Active mode‐locking is a method of choice due to its electrically controlled laser operation. This study reports the first demonstration of a graphene based actively mode‐locked laser for ultrashort pulse generation. Graphene electrooptic modulators benefit from broader operation bandwidth, lower insertion loss, and smaller footprint, when compared with conventional bulk‐material modulators.
      번역하기

      Actively mode‐locked lasers offer varying degrees of flexibility for a wider range of applications than their passively modulated counterparts, due to their capability for electrically controlled ultrahigh repetition rate operation. Graphene based e...

      Actively mode‐locked lasers offer varying degrees of flexibility for a wider range of applications than their passively modulated counterparts, due to their capability for electrically controlled ultrahigh repetition rate operation. Graphene based electrooptic modulators with unique advantages of broad operation bandwidth and ultrafast speed are suitable for light modulation in various optoelectronic applications. Here, an actively mode‐locked laser with a graphene based electrooptic modulator is reported for the first time. The active mode‐locking technique combined together with the intracavity nonlinear pulse shortening effect allows the generation of transform‐limited 1.44 ps pulses with pulse energy of 844 pJ. The electrically controlled repetition rate of generated pulses, a key performance advantage of active mode‐locking, is also demonstrated. These results provide a practical and effective approach for actively mode‐locked lasers with broad operation bandwidth and compact footprint, which contributes a new way for applications of two‐dimensional (2D) layered materials in ultrafast lasers.
      Active mode‐locking is a method of choice due to its electrically controlled laser operation. This study reports the first demonstration of a graphene based actively mode‐locked laser for ultrashort pulse generation. Graphene electrooptic modulators benefit from broader operation bandwidth, lower insertion loss, and smaller footprint, when compared with conventional bulk‐material modulators.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼