RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Incorporating Prior Belief in the General Path Model: A Comparison of Information Sources

      한글로보기

      https://www.riss.kr/link?id=A104203938

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The general path model (GPM) is one approach for performing degradation-based, or Type III, prognostics. TheGPM fits a parametric function to the collected observations of a prognostic parameter and extrapolates the fit to a failurethreshold. This app...

      The general path model (GPM) is one approach for performing degradation-based, or Type III, prognostics. TheGPM fits a parametric function to the collected observations of a prognostic parameter and extrapolates the fit to a failurethreshold. This approach has been successfully applied to a variety of systems when a sufficient number of prognosticparameter observations are available. However, the parametric fit can suffer significantly when few data are available orthe data are very noisy. In these instances, it is beneficial to include additional information to influence the fit to conformto a prior belief about the evolution of system degradation. Bayesian statistical approaches have been proposed to includeprior information in the form of distributions of expected model parameters. This requires a number of run-to-failure caseswith tracked prognostic parameters; these data may not be readily available for many systems. Reliability information andstressor-based (Type I and Type II, respectively) prognostic estimates can provide the necessary prior belief for the GPM.
      This article presents the Bayesian updating framework to include prior information in the GPM and compares the efficacyof including different information sources on two data sets.

      더보기

      참고문헌 (Reference)

      1 C . J. Lu, "Using degradation measures to estimate a time-to-failure distribution" 35 (35): 161-174, 1993

      2 J. W. Hines, "Tutorial: Empirical Methods for Process and Equipment Prognostics" 2008

      3 B . R. Upadhyaya, "Residual Life Estimation of Plant Components" 7 (7): 22-29, 1994

      4 S. J. Engel, "Prognostics, the Real Issues Involved with Predicting Life Remaining" 2000

      5 J. B. Coble, "Prognostic Algorithm Categorization with PHM Challenge Application" IEEE 1-11, 2008

      6 J. W. Hines, "Prognosis of Remaining Useful Life for Complex Engineering Systems" American Nuclear Society 2006

      7 A. Agogino, "Mill Data Set, NASA Ames Prognostics Data Repository" BEST lab

      8 A. C. Aitken, "IV.—On Least Squares and Linear Combination of Observations" 55 : 42-48, 1936

      9 D. W. Brown, "Electronic Prognostics – A Case Study Using Global Positioning System (GPS)" 47 (47): 1874-1881, 2007

      10 A. Saxena, "Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation" 2008

      1 C . J. Lu, "Using degradation measures to estimate a time-to-failure distribution" 35 (35): 161-174, 1993

      2 J. W. Hines, "Tutorial: Empirical Methods for Process and Equipment Prognostics" 2008

      3 B . R. Upadhyaya, "Residual Life Estimation of Plant Components" 7 (7): 22-29, 1994

      4 S. J. Engel, "Prognostics, the Real Issues Involved with Predicting Life Remaining" 2000

      5 J. B. Coble, "Prognostic Algorithm Categorization with PHM Challenge Application" IEEE 1-11, 2008

      6 J. W. Hines, "Prognosis of Remaining Useful Life for Complex Engineering Systems" American Nuclear Society 2006

      7 A. Agogino, "Mill Data Set, NASA Ames Prognostics Data Repository" BEST lab

      8 A. C. Aitken, "IV.—On Least Squares and Linear Combination of Observations" 55 : 42-48, 1936

      9 D. W. Brown, "Electronic Prognostics – A Case Study Using Global Positioning System (GPS)" 47 (47): 1874-1881, 2007

      10 A. Saxena, "Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation" 2008

      11 GYUN YOUNG HEO, "CONDITION MONITORING USING EMPIRICAL MODELS: TECHNICAL REVIEW AND PROSPECTS FOR NUCLEAR APPLICATIONS" 한국원자력학회 40 (40): 49-68, 2008

      12 J . Coble, "Applying the General Path Model to Estimation of Remaining Useful Life" 2 (2): 72-84, 2011

      13 J. Coble, "An Automated Approach for Fusing Data Sources to Identify Optimal Prognostic Parameters" University of Tennessee 2010

      14 K. Keller, "Aircraft Electrical Power Systems Prognostics and Health Management" 2006

      15 J. Coble, "Adaptive monitoring, fault detection and diagnostics, and prognostics system for the IRIS nuclear plant" 2010

      16 C . S. Byington, "A Model-Based Approach to Prognostics and Health Management for Flight Control Actuators" 2004

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2014-01-01 평가 SCIE 등재 (등재유지) KCI등재
      2014-01-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-07-31 학술지명변경 한글명 : Jorunal of the Korean Nuclear Society -> Nuclear Engineering and Technology
      외국어명 : 미등록 -> Nuclear Engineering and Technology
      KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.04 0.17 0.77
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.63 0.56 0.343 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼