RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Fabrication and Characterization of 4-T/203 mm RT Bore 2G HTS Magnet With No-Insulation Method

      한글로보기

      https://www.riss.kr/link?id=A107547373

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P>We fabricated superconducting magnet using second-generation (2G) high-temperature superconducting wire by SuNAM. Magnetic field strength at the center is 4 T, and room temperature bore diameter is 203 mm. The magnet consists of 30 double pan...

      <P>We fabricated superconducting magnet using second-generation (2G) high-temperature superconducting wire by SuNAM. Magnetic field strength at the center is 4 T, and room temperature bore diameter is 203 mm. The magnet consists of 30 double pancake coils (DPCs) with the inner diameter of 245 mm and outer diameter of 297 mm. All double pancakes were wound by no-insulation method and performance were tested separately before assemble. Tested DPCs were resistively connected by HTS tape(splice joint), and assembled coil was conduction cooled by a two-stage Gifford-McMahon cryo-cooler to the operating temperature of 8 K. The size of magnet is 452 mm in height. Current, voltage, and field strength were measured as a function of time with various ramping up and down conditions and results were compared with the simulated behavior. The coil generates 4 T when operating current ramped to 205 A by 0.03 A/s without quench. Initial cool down time was 72 h and the measure field homogeneity in 10 mm DSV was 0.015% and 0.012% in radial axis and vertical axis, respectively. The results showed that no-insulation winding method is a possible option for making compact magnet coil with sufficient structural integrity, thermal and electrical stability at the same time. The magnet showed quench at field strength of 4.49 T when ramped with 0.2 A/s to 235 A. The magnet showed same performance after recovery from quench.</P>

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼