RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      효율적인 성능기반 내진설계를 위한 후처리 프로그램 개발 = Development of Post-processor Program for Efficient Performance-Based Seismic Design

      한글로보기

      https://www.riss.kr/link?id=A109433203

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Performance-Based Seismic Design (PBSD) is an approach that evaluates how structures will perform under different levels of seismic activity. It focuses on ensuring that buildings not only withstand earthquakes but also meet specific performance objectives, such as minimizing damage or maintaining functionality after the event. Unlike traditional methods, PBSD allows for more tailored, cost-effective designs by considering varying degrees of acceptable damage based on the structure's importance and use. PBSD was introduced in Korea in 2016 to replace elastic design, which is inevitable to over-design to cope with all variables such as earthquakes and winds. When PBSD is applied to the structural design new building, One of the challenges of PBSD is the complexity involved in creating accurate inelastic analysis models. The process requires significant time and effort to analyze the results, as it involves detailed simulations of how structures will behave under seismic stress. Additionally, organizing and interpreting the analysis data to meet performance objectives can be labor-intensive and technically demanding. In order to solve this problem, a post-processor program was developed in this study. A post-processor was developed based on Excel program using Visual Basic for Applications(VBA). Because analysis outputs of Perform-3D, that is a commercial software for structural analysis and design, are very complicated, generation of tables and graphs for report is significant time and effort consuming task. When the developed post-processor is used to make the seismic design report, the required task time is significantly reduced.
      번역하기

      Performance-Based Seismic Design (PBSD) is an approach that evaluates how structures will perform under different levels of seismic activity. It focuses on ensuring that buildings not only withstand earthquakes but also meet specific performance objec...

      Performance-Based Seismic Design (PBSD) is an approach that evaluates how structures will perform under different levels of seismic activity. It focuses on ensuring that buildings not only withstand earthquakes but also meet specific performance objectives, such as minimizing damage or maintaining functionality after the event. Unlike traditional methods, PBSD allows for more tailored, cost-effective designs by considering varying degrees of acceptable damage based on the structure's importance and use. PBSD was introduced in Korea in 2016 to replace elastic design, which is inevitable to over-design to cope with all variables such as earthquakes and winds. When PBSD is applied to the structural design new building, One of the challenges of PBSD is the complexity involved in creating accurate inelastic analysis models. The process requires significant time and effort to analyze the results, as it involves detailed simulations of how structures will behave under seismic stress. Additionally, organizing and interpreting the analysis data to meet performance objectives can be labor-intensive and technically demanding. In order to solve this problem, a post-processor program was developed in this study. A post-processor was developed based on Excel program using Visual Basic for Applications(VBA). Because analysis outputs of Perform-3D, that is a commercial software for structural analysis and design, are very complicated, generation of tables and graphs for report is significant time and effort consuming task. When the developed post-processor is used to make the seismic design report, the required task time is significantly reduced.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼