RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Integration of Nanostructured Semiconducting/Conducting Polymers in Organic Photovoltaic Devices.

      한글로보기

      https://www.riss.kr/link?id=T13050244

      • 저자
      • 발행사항

        [S.l.]: State University of New York at Stony Brook 2012

      • 학위수여대학

        State University of New York at Stony Brook Physics

      • 수여연도

        2012

      • 작성언어

        영어

      • 주제어
      • 학위

        Ph.D.

      • 페이지수

        163 p.

      • 지도교수/심사위원

        Adviser: Benjamin M. Ocko.

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      소속기관이 구독 중이 아닌 경우 오후 4시부터 익일 오전 9시까지 원문보기가 가능합니다.

      부가정보

      다국어 초록 (Multilingual Abstract)

      One of the main difficulties in incorporating nanotechnology into organic electronic devices is the complexity of fabricating nanoscale structures with relatively well-defined order over relatively large areas. Nanoimprint technology offers a promising route to address this problem, because it can be used to control morphology and molecular orientation of the polymer nanostructures from which functional devices can be built directly.
      In this dissertation, the development of novel architectures for organic electronic devices utilizing the polymer nanostructures fabricated by nanoimprint lithography is presented. First, nanoimprinted structures were fabricated with 100 nm spaced grooves from thin films of poly-(3 hexylthiophene), a conjugated semiconducting polymer. These structures have potential applications in the formation of ordered heterojunction organic photovoltaic (OPV) devices. Grazing-incidence wide-angle X-ray scattering studies of the morphology and orientation of the polymer thin films showed that nanoimprinting introduced significant reorientation while Grazing-incidence small-angle X-ray scattering studies demonstrated the excellent fidelity of the pattern transfer. Temperature-dependent scattering measurements indicated that the imprinted induced orientation and alignment remain intact even at temperatures where the imprinted topographical features nearly vanish.
      In the second part of the thesis, the integration of conducting polymer, poly (3,4-ethylenedioxythiophene) poly (styrene sulfonate) (PEDOT:PSS), nanostructures in OPV devices were investigated. PEDOT:PSS nanostructures, fabricated by water-vapor assisted nanoimprinting, have potential to improve the device performance through both an increased interfacial area and the reorientation of the electron-donor polymer in the subsequently deposited active layer.
      번역하기

      One of the main difficulties in incorporating nanotechnology into organic electronic devices is the complexity of fabricating nanoscale structures with relatively well-defined order over relatively large areas. Nanoimprint technology offers a promisi...

      One of the main difficulties in incorporating nanotechnology into organic electronic devices is the complexity of fabricating nanoscale structures with relatively well-defined order over relatively large areas. Nanoimprint technology offers a promising route to address this problem, because it can be used to control morphology and molecular orientation of the polymer nanostructures from which functional devices can be built directly.
      In this dissertation, the development of novel architectures for organic electronic devices utilizing the polymer nanostructures fabricated by nanoimprint lithography is presented. First, nanoimprinted structures were fabricated with 100 nm spaced grooves from thin films of poly-(3 hexylthiophene), a conjugated semiconducting polymer. These structures have potential applications in the formation of ordered heterojunction organic photovoltaic (OPV) devices. Grazing-incidence wide-angle X-ray scattering studies of the morphology and orientation of the polymer thin films showed that nanoimprinting introduced significant reorientation while Grazing-incidence small-angle X-ray scattering studies demonstrated the excellent fidelity of the pattern transfer. Temperature-dependent scattering measurements indicated that the imprinted induced orientation and alignment remain intact even at temperatures where the imprinted topographical features nearly vanish.
      In the second part of the thesis, the integration of conducting polymer, poly (3,4-ethylenedioxythiophene) poly (styrene sulfonate) (PEDOT:PSS), nanostructures in OPV devices were investigated. PEDOT:PSS nanostructures, fabricated by water-vapor assisted nanoimprinting, have potential to improve the device performance through both an increased interfacial area and the reorientation of the electron-donor polymer in the subsequently deposited active layer.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼