RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms

      한글로보기

      https://www.riss.kr/link?id=A108012896

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      A hybrid energy harvester with frequency up-conversion structures is proposed. The harvester achieves a high power output by utilizing both piezoelectric and electromagnetic transduction mechanisms. The harvester comprises a flexible substrate and two...

      A hybrid energy harvester with frequency up-conversion structures is proposed. The harvester achieves a high power output by utilizing both piezoelectric and electromagnetic transduction mechanisms. The harvester comprises a flexible substrate and two (internal and external) cantilevers. The internal and external cantilevers used for piezoelectric and electromagnetic conversion, respectively, are arranged such that the piezoelectric internal cantilever can vibrate with a large displacement to produce high output power. We use a frequency up-conversion method to convert the bending of the harvester into the vibration of the structure so that the harvester can generate energy even from the mechanical motion with an extremely low frequency. Two harvester configurations are investigated to validate the effect of the relative positions of the coil and magnet on the output voltage of the harvester. The maximum power output of the hybrid harvester is 7.38 mW, with outputs of 1.35 and 6.03 mW for piezoelectric and electromagnetic conversion, respectively.

      더보기

      참고문헌 (Reference)

      1 Edwards, B., "Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester" 25 (25): 055019-, 2016

      2 Shirvanimoghaddam, M., "Towards a green and self-powered Internet of Things using piezoelectric energy harvesting" 7 : 94533-94556, 2019

      3 Li, Z., "Toward a 0. 33W piezoelectric and electromagnetic hybrid energy harvester : Design, experimental studies and self-powered applications" 255 : 113805-, 2019

      4 Hong, Y., "Theoretical analysis and experimental study of the effect of the neutral plane of a composite piezoelectric cantilever" 171 : 1020-1029, 2018

      5 Meng Su ; Juergen Brugger ; Beomjoon Kim, "Simply Structured Wearable Triboelectric Nanogenerator Based on a Hybrid Composition of Carbon Nanotubes and Polymer Layer" 한국정밀공학회 7 (7): 683-698, 2020

      6 Yang, B., "Piezoelectric shell structures as wearable energy harvesters for effective power generation at lowfrequency movement" 188 : 427-433, 2012

      7 Kwon, D. -S., "Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation" 104 (104): 113904-, 2014

      8 Kwon, D. -S., "Piezoelectric and electromagnetic hybrid energy harvester using two cantilevers for frequency up-conversion" 22-26, 2017

      9 Xia, H., "Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force : Modeling and experiment" 257 : 73-83, 2017

      10 SoltanRezaee, M., "Nonlinear stability analysis of piecewise actuated piezoelectric microstructures" 160 : 200-208, 2019

      1 Edwards, B., "Validation of a hybrid electromagnetic–piezoelectric vibration energy harvester" 25 (25): 055019-, 2016

      2 Shirvanimoghaddam, M., "Towards a green and self-powered Internet of Things using piezoelectric energy harvesting" 7 : 94533-94556, 2019

      3 Li, Z., "Toward a 0. 33W piezoelectric and electromagnetic hybrid energy harvester : Design, experimental studies and self-powered applications" 255 : 113805-, 2019

      4 Hong, Y., "Theoretical analysis and experimental study of the effect of the neutral plane of a composite piezoelectric cantilever" 171 : 1020-1029, 2018

      5 Meng Su ; Juergen Brugger ; Beomjoon Kim, "Simply Structured Wearable Triboelectric Nanogenerator Based on a Hybrid Composition of Carbon Nanotubes and Polymer Layer" 한국정밀공학회 7 (7): 683-698, 2020

      6 Yang, B., "Piezoelectric shell structures as wearable energy harvesters for effective power generation at lowfrequency movement" 188 : 427-433, 2012

      7 Kwon, D. -S., "Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation" 104 (104): 113904-, 2014

      8 Kwon, D. -S., "Piezoelectric and electromagnetic hybrid energy harvester using two cantilevers for frequency up-conversion" 22-26, 2017

      9 Xia, H., "Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force : Modeling and experiment" 257 : 73-83, 2017

      10 SoltanRezaee, M., "Nonlinear stability analysis of piecewise actuated piezoelectric microstructures" 160 : 200-208, 2019

      11 Xiuting Sun ; Feng Wang ; Jian Xu, "Nonlinear piezoelectric structure for ultralow-frequency band vibration energy harvesting with magnetic interaction" 한국정밀공학회 6 (6): 671-679, 2019

      12 SoltanRezaee, M., "Nonlinear dynamic stability of piezoelectric thermoelastic electromechanical resonators" 10 : 2982-, 2020

      13 김재은 ; Sowon Lee ; Yoon Young Kim, "Mathematical model development, experimental validation and design parameter study of a folded two-degree-of-freedom piezoelectric vibration energy harvester" 한국정밀공학회 6 (6): 893-906, 2019

      14 Murotani, K., "MEMS electret energy harvester with embedded bistable electrostatic spring for broadband response" 28 (28): 104001-, 2018

      15 Fan, K., "Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations" 27 (27): 085001-, 2018

      16 Zhao, C., "Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting" 57 : 440-449, 2019

      17 Aldawood, G., "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations" 253 : 113546-, 2019

      18 Orrego, S., "Harvesting ambient wind energy with an inverted piezoelectric flag" 194 : 212-222, 2017

      19 Hu, J., "Graphene-grid deployment in energy harvesting cooperative wireless sensor networks for green IoT" 15 (15): 1820-1829, 2019

      20 Ahmad, I., "Flow-based electromagnetic-type energy harvester using microplanar coil for IoT sensors application" 43 (43): 5384-5391, 2019

      21 Yongkeun Oh ; Dae-Sung Kwon ; Youngkee Eun ; Wondo Kim ; Min-Ook Kim ; Hee-Jin Ko ; Seong Gu Kang ; Jongbaeg Kim, "Flexible Energy Harvester with Piezoelectric and Thermoelectric Hybrid Mechanisms for Sustainable Harvesting" 한국정밀공학회 6 (6): 691-698, 2019

      22 Jung, S. -M., "Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation" 96 (96): 111906-, 2010

      23 Kulah, H., "Energy scavenging from lowfrequency vibrations by using frequency up-conversion for wireless sensor applications" 8 (8): 261-268, 2008

      24 Wang, S. -W., "Electromagnetic energy harvester interface design for wearable applications" 65 : 667-671, 2018

      25 Shu, Y. C., "Efficiency of energy conversion for a piezoelectric power harvesting system" 16 (16): 2429-2438, 2006

      26 Ga-Yeon Kim ; Mahesh Peddigari ; Kyung-Won Lim ; Geon-Tae Hwang ; Woon-Ha Yoon ; HongSoo Choi ; 이정우 ; 류정호, "Effects of Thickness Ratio in Piezoelectric/Elastic Cantilever Structure on the Piezoelectric Energy Harvesting Performance" 대한금속·재료학회 15 (15): 61-69, 2019

      27 Nguyen, V., "Effect of humidity and pressure on the triboelectric nanogenerator" 2 (2): 604-608, 2013

      28 Kim, S. -W., "Determination of the appropriate piezoelectric materials for various types of piezoelectric energy harvesters with high output power" 57 : 581-591, 2019

      29 박정현 ; 박상후 ; 임태우 ; 김상대, "Design and Experimental Verification of Flexible Plate-Type Piezoelectric Vibrator for Energy Harvesting System" 한국정밀공학회 3 (3): 253-259, 2016

      30 Xu, L., "Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting" 12 (12): 1849-1858, 2018

      31 Tsukamoto, T., "Bimorph piezoelectric vibration energy harvester with flexible 3D meshed-core structure for low frequency vibration" 19 : 660-668, 2018

      32 Zhao, L., "An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting" 212 : 233-243, 2018

      33 Halim, M. A., "An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion" 217 : 66-74, 2018

      34 김재은 ; 김홍진 ; 윤한솔 ; 김윤영 ; 윤병동, "An Energy Conversion Model for Cantilevered Piezoelectric Vibration Energy Harvesters using Only Measurable Parameters" 한국정밀공학회 2 (2): 51-57, 2015

      35 Pyo, S., "All-textile wearable tirboelectric nanogenerator using pile-embroidered fibers for enhancing output power" 29 (29): 055026-, 2020

      36 Hamid, R., "A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique" 257 : 198-207, 2017

      37 Zhao, L. -C., "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester" 239 : 735-746, 2019

      38 Roundy, S., "A study of low level vibrations as a power source for wireless sensor nodes" 26 (26): 1131-1144, 2003

      39 Salman Khalid ; Izaz Raouf ; Asif Khan ; Nayeon Kim ; Heung Soo Kim, "A review of human-powered energy harvesting for smart electronics: Recent Progress and challenges" 한국정밀공학회 6 (6): 821-851, 2019

      40 Sultana, A., "A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat" 221 : 299-307, 2018

      41 Jella, V., "A novel approach to ambient energy(thermoelectric, piezoelectric and solar-TPS)harvesting : Realization of a single structured TPS-fusion energy device using MAPbI 3" 52 : 11-21, 2017

      42 Toyabur, R. M., "A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequenct ambient vibrations" 168 : 454-466, 2018

      43 Eun, Y., "A flexible hybrid strain energy harvester using piezoelectric and electrostatic conversion" 23 (23): 045040-, 2014

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2015-04-01 평가 SCIE 등재 (기타) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 3.62 2.24 0
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0 0 0 0.21
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼