RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      전기화학적 수소 압축기 기술 = A Review of Electrochemical Hydrogen Compressor Technology

      한글로보기

      https://www.riss.kr/link?id=A107237039

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.
      번역하기

      There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperat...

      There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

      더보기

      참고문헌 (Reference)

      1 K. O nda, "Treatment of low concentration hydrogen by electrochemical pump or proton exchange membrane fuel cell" 188 (188): 1-7, 2009

      2 G. Sdanghi, "Towards non-mechanical hybrid hydrogen compression for decentralized hydrogen facilities" 13 (13): 3145-, 2020

      3 B. L. Kee, "Thermodynamic insights for electrochemical hydrogen compression with proton-conducting membranes" 9 (9): 77-, 2019

      4 R. Ströbel, "The compression of hydrogen in an electrochemical cell based on a PE fuel cell design" 105 (105): 208-215, 2002

      5 C. Casati, "Some fundamental aspects in electrochemical hydrogen purification/compression" 180 (180): 103-113, 2008

      6 K. Onda, "Separation and compression characteristics of hydrogen by use of proton exchange membrane" 164 (164): 1-8, 2007

      7 G. Sdanghi, "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications" 102 : 150-170, 2019

      8 S. Toghyani, "Parametric study of a proton exchange membrane compressor for electrochemical hydrogen storage using numerical assessment" 30 : 101469-, 2020

      9 A. Rico-Zavala, "Nanocomposite membrane based on SPEEK as a perspectives application in electrochemical hydrogen compressor" 44 (44): 4839-4850, 2019

      10 A. Godula-Jopek, "Hydrogne production by electrolysis" Wiley 52-53, 2015

      1 K. O nda, "Treatment of low concentration hydrogen by electrochemical pump or proton exchange membrane fuel cell" 188 (188): 1-7, 2009

      2 G. Sdanghi, "Towards non-mechanical hybrid hydrogen compression for decentralized hydrogen facilities" 13 (13): 3145-, 2020

      3 B. L. Kee, "Thermodynamic insights for electrochemical hydrogen compression with proton-conducting membranes" 9 (9): 77-, 2019

      4 R. Ströbel, "The compression of hydrogen in an electrochemical cell based on a PE fuel cell design" 105 (105): 208-215, 2002

      5 C. Casati, "Some fundamental aspects in electrochemical hydrogen purification/compression" 180 (180): 103-113, 2008

      6 K. Onda, "Separation and compression characteristics of hydrogen by use of proton exchange membrane" 164 (164): 1-8, 2007

      7 G. Sdanghi, "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications" 102 : 150-170, 2019

      8 S. Toghyani, "Parametric study of a proton exchange membrane compressor for electrochemical hydrogen storage using numerical assessment" 30 : 101469-, 2020

      9 A. Rico-Zavala, "Nanocomposite membrane based on SPEEK as a perspectives application in electrochemical hydrogen compressor" 44 (44): 4839-4850, 2019

      10 A. Godula-Jopek, "Hydrogne production by electrolysis" Wiley 52-53, 2015

      11 J. M. Sedlak, "Hydrogen recovery and purification using the solid polymer electrolyte electrolysis cell" 6 (6): 45-51, 1981

      12 S. J. Kim, "Highly active and CO2 tolerant Ir nanocatalysts for H2/CO2 separation in electrochemical hydrogen pumps" 158–159 : 348-354, 2014

      13 G. Sdanghi, "Feasibility of hydrogen compression in an electrochemical system : focus on water transport mechanisms" 20 (20): 370-380, 2020

      14 M. Nordio, "Experimental and modelling study of an electrochemical hydrogen compressor" 369 : 432-442, 2019

      15 F. Barbir, "Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack" 37 : 359-365, 2007

      16 B. Rohland, "Electrochemical hydrogen compressor" 43 (43): 3841-3846, 1998

      17 M. Rhandi, "Electrochemical hydrogen compression and purification versus competing technologies: part I. Pros and cons" 41 (41): 756-769, 2020

      18 M. Trégaro, "Electrochemical hydrogen compression and purification versus competing technologies : part II. Challenges in electrocatalysis" 41 (41): 770-782, 2020

      19 J. Zou, "Electrochemical compression technologies for high-pressure hydrogen : current status, challenges and perspective" 3 : 690-729, 2020

      20 M. Hamdan, "Electrochemical compression" 2019

      21 A. Chouhan, "Effect of backdiffusion on the performance of an electrochemical hydrogen compressor" 45 (45): 10991-10999, 2020

      22 M. Nordio, "Effect of CO2 on the performance of an electrochemical hydrogen compressor" 392 : 123647-, 2020

      23 S. A. Grigoriev, "Description and characterization of an electrochemical hydrogen compressor/concentrator based on solid polymer electrolyte technology" 36 (36): 4148-4155, 2011

      24 S. Huang, "Coupling hydrogen separation with butanone hydrogenation in an electrochemical hydrogen pump with sulfonated poly(phthalazinone ether sulfone ketone)membrane" 327 : 178-186, 2016

      25 X. Wu, "Comparison of Pt and Pd catalysts for hydrogen pump separation from reformate" 218 : 424-434, 2012

      26 S. J. Kim, "Characterizations of polybenzimidazole based electrochemical hydrogen pumps with various Pt loadings for H2/CO2 gas separation" 38 (38): 14816-14823, 2013

      27 Y. Hao, "Characterization of an electrochemical hydrogen pump with internal humidifier and dead-end anode channel" 41 (41): 13879-13887, 2016

      28 M. T. Nguyen, "Characterisation of a electrochemical hydrogen pump using electrochemical impedance spectroscopy" 41 : 1033-1042, 2011

      29 U. Schindewolf, "C. H. Hamann, W. Vielstich: Elektrochemie II, Elektrodenprozesse, Angewandte Elektrochemie, Taschentext 42, Verlag Chemie, Physik Verlag, Weinheim 1981. 428 Seiten, Preis: DM 52,-" Wiley 86 (86): 764-764, 1982

      30 A. Chouhan, "Analysis of an electrochemical compressor stack" 45 (45): 31452-31465, 2020

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-08-16 학술지명변경 외국어명 : 미등록 -> Transactions of the Korean Hydrogen and New Energy Society KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학술지등록 한글명 : 한국수소및신에너지학회논문집
      외국어명 : 미등록
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.25 0.25 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.25 0.23 0.371 0.17
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼